Seetapun’s Theorem revisited

Yang Yue

Department of Mathematics
National University of Singapore

January 28, 2016
Ramsey’s Theorem

Definition
For $A \subseteq \mathbb{N}$, let $[A]^n$ denote the set of all n-element subsets of A.

Theorem (Ramsey, 1930)
Suppose $f : [\mathbb{N}]^n \to \{0, 1, \ldots, k - 1\}$. Then there is an infinite set $H \subseteq \mathbb{N}$ such that f is a constant on $[H]^n$.

This version is denoted by RT_k^n.

(often described in terms of coloring/homogeneous and problem/solution.)
Ramsey’s Theorem

Definition
For $A \subseteq \mathbb{N}$, let $[A]^n$ denote the set of all n-element subsets of A.

Theorem (Ramsey, 1930)
Suppose $f : [\mathbb{N}]^n \to \{0, 1, \ldots, k - 1\}$. Then there is an infinite set $H \subseteq \mathbb{N}$ such that f is a constant on $[H]^n$.

This version is denoted by RT_k^n.

(often described in terms of coloring/homogeneous and problem/solution.)
Ramsey’s Theorem

Definition
For $A \subseteq \mathbb{N}$, let $[A]^n$ denote the set of all n-element subsets of A.

Theorem (Ramsey, 1930)
Suppose $f : [\mathbb{N}]^n \rightarrow \{0, 1, \ldots, k - 1\}$. Then there is an infinite set $H \subseteq \mathbb{N}$ such that f is a constant on $[H]^n$.

This version is denoted by RT^n_k.

(often described in terms of coloring/homogeneous and problem/solution.)
Ramsey’s Theorem

Definition
For $A \subseteq \mathbb{N}$, let $[A]^n$ denote the set of all n-element subsets of A.

Theorem (Ramsey, 1930)
Suppose $f : [\mathbb{N}]^n \rightarrow \{0, 1, \ldots, k - 1\}$. Then there is an infinite set $H \subseteq \mathbb{N}$ such that f is a constant on $[H]^n$.

This version is denoted by RT^n_k.

(often described in terms of coloring/homogeneous and problem/solution.)
Goal(s) of Reverse Mathematics

- Goal: What set existence axioms are needed to prove the theorems of ordinary, classical (countable) mathematics?

- Other motivations: Analyze the relative strength of mathematical theorems; and

- discover new proofs and insights.
Goal(s) of Reverse Mathematics

- Goal: What set existence axioms are needed to prove the theorems of ordinary, classical (countable) mathematics?

- Other motivations: Analyze the relative strength of mathematical theorems; and

 - discover new proofs and insights.
Goal(s) of Reverse Mathematics

▶ Goal: What set existence axioms are needed to prove the theorems of ordinary, classical (countable) mathematics?

▶ Other motivations: Analyze the relative strength of mathematical theorems; and

▶ discover new proofs and insights.
We use subsystems of second order arithmetic \mathbb{Z}_2.

Today we only look at

- RCA_0: $\text{PA}^- + \Sigma^0_1$-induction and Δ^0_0-comprehension;
- WKL_0: RCA_0 and every infinite binary tree has an infinite path;
- ACA_0: RCA_0 and arithmetical comprehension: for φ arithmetic, $\exists X \forall n (n \in X \iff \varphi(n))$.

(Subsystems in first order arithmetic has also been used, $I\Sigma_1 < B\Sigma_2 < I\Sigma_2 < \cdots$.)
Measuring Strengths

- We use subsystems of second order arithmetic \mathbb{Z}_2.

- Today we only look at

 - RCA_0: $PA^- + \Sigma_1$-induction and Δ_0-comprehension;

 - WKL_0: RCA_0 and every infinite binary tree has an infinite path;

 - ACA_0: RCA_0 and arithmetical comprehension: for φ arithmetic, $\exists X \forall n (n \in X \leftrightarrow \varphi(n))$.

- (Subsystems in first order arithmetic has also been used, $I\Sigma_1 < B\Sigma_2 < I\Sigma_2 < \cdots$.)
Measuring Strengths

- We use subsystems of second order arithmetic \mathbb{Z}_2.

- Today we only look at
 - RCA_0: $PA^- + \Sigma_1$-induction and Δ_0-comprehension;
 - WKL_0: RCA_0 and every infinite binary tree has an infinite path;
 - ACA_0: RCA_0 and arithmetical comprehension: for φ arithmetic, $\exists X \forall n (n \in X \iff \varphi(n))$.

- (Subsystems in first order arithmetic has also been used, $I\Sigma_1 < B\Sigma_2 < I\Sigma_2 < \cdots$.)
Measuring Strengths

- We use subsystems of second order arithmetic \mathbb{Z}_2.

- Today we only look at
 - RCA_0: $PA^- + \Sigma_1$-induction and Δ_0-comprehension;
 - WKL_0: RCA_0 and every infinite binary tree has an infinite path;
 - ACA_0: RCA_0 and arithmetical comprehension: for φ arithmetic, $\exists X \forall n (n \in X \leftrightarrow \varphi(n))$.

- (Subsystems in first order arithmetic has also been used, $I\Sigma_1 < B\Sigma_2 < I\Sigma_2 < \cdots$.)
Measuring Strengths

- We use subsystems of second order arithmetic \mathbb{Z}_2.

- Today we only look at
 - RCA_0: $\text{PA}^- + \Sigma_1$-induction and Δ_0-comprehension;
 - WKL_0: RCA_0 and every infinite binary tree has an infinite path;
 - ACA_0: RCA_0 and arithmetical comprehension: for φ arithmetic, $\exists X \forall n (n \in X \leftrightarrow \varphi(n))$.

- (Subsystems in first order arithmetic has also been used,
 $I\Sigma_1 < B\Sigma_2 < I\Sigma_2 < \cdots$.)
Models are often specified by their second order part:

- **RCA\(_0\)**: A Turing ideal.

- **WKL\(_0\)**: Scott sets, models can be subcollections of low sets.

- **ACA\(_0\)**: Jump idea.
Models

Models are often specified by their second order part:

- **RCA$_0$**: A Turing ideal.

- **WKL$_0$**: Scott sets, models can be subcollections of low sets.

- **ACA$_0$**: Jump idea.
Models

Models are often specified by their second order part:

- RCA_0: A Turing ideal.

- WKL_0: Scott sets, models can be subcollections of low sets.

- ACA_0: Jump idea.
Since 1972, recursion theorists have been studying the “effective” content of Ramsey’s Theorem.

Basic Question: Suppose $f : \mathbb{N}^n \rightarrow \{0, \ldots, k - 1\}$ is recursive. What can we say about the complexity of infinite f-homogeneous sets H?

Effective studies and reverse mathematics are related.
Since 1972, recursion theorists have been studying the “effective” content of Ramsey’s Theorem.

Basic Question: Suppose $f : [\mathbb{N}]^n \to \{0, \ldots, k - 1\}$ is recursive. What can we say about the complexity of infinite f-homogeneous sets H?

Effective studies and reverse mathematics are related.
Since 1972, recursion theorists have been studying the “effective” content of Ramsey’s Theorem.

Basic Question: Suppose $f : [\mathbb{N}]^n \to \{0, \ldots, k - 1\}$ is recursive. What can we say about the complexity of infinite f-homogeneous sets H?

Effective studies and reverse mathematics are related.
Jockusch’s results (phrased in reverse math)

Theorem (1972)

1. ACA$_0$ \vdash RT$_k^n$.

2. RCA$_0$ + RT$_2^3$ implies ACA$_0$.

3. WKL$_0$ does not imply RT$_2^2$.
Jockusch’s results (phrased in reverse math)

Theorem (1972)

1. $\text{ACA}_0 \vdash \text{RT}_k^n$.

2. $\text{RCA}_0 + \text{RT}_2^3$ implies ACA_0.

3. WKL_0 does not imply RT_2^2.
Jockusch’s results (phrased in reverse math)

Theorem (1972)

1. \(\text{ACA}_0 \vdash \text{RT}_k^n \).

2. \(\text{RCA}_0 + \text{RT}_2^3 \) implies \(\text{ACA}_0 \).

3. \(\text{WKL}_0 \) does not imply \(\text{RT}_2^2 \).
Seetapun’s Theorem

Theorem (Seetapun and Slaman, 1995)
\(\text{RT}_2^2 \) is strictly weaker than \(\text{ACA}_0 \).

It revived the area after more than 20 years silence.

Basic idea: (1) avoiding the upper cone; and (2) iterate.

In this talk, I will highlight only one important ingredient, and ignore other issues like iteration and relativization issues.
Seetapun’s Theorem

Theorem (Seetapun and Slaman, 1995)

RT_2^2 is strictly weaker than ACA_0.

It revived the area after more than 20 years silence.

Basic idea: (1) avoiding the upper cone; and (2) iterate.

In this talk, I will highlight only one important ingredient, and ignore other issues like iteration and relativization issues.
Seetapun’s Theorem

Theorem (Seetapun and Slaman, 1995)

\(\text{RT}_2^2 \) is strictly weaker than ACA\(_0\).

It revived the area after more than 20 years silence.

Basic idea: (1) avoiding the upper cone; and (2) iterate.

In this talk, I will highlight only one important ingredient, and ignore other issues like iteration and relativization issues.
Seetapun’s Theorem

Theorem (Seetapun and Slaman, 1995)
RT^2_2 is strictly weaker than ACA₀.

It revived the area after more than 20 years silence.

Basic idea: (1) avoiding the upper cone; and (2) iterate.

In this talk, I will highlight only one important ingredient, and ignore other issues like iteration and relativization issues.
Classical Cone Avoiding: Finding Splits

Proposition
Given C nonrecursive, there is a nonrecursive set $A \not\geq_T C$.

Proof (Sketch)
It is easy to make A nonrecursive.

We use Cohen forcing to satisfy requirements $\Phi^A_e \neq C$ for all $e \in \omega$.

Given an initial segment p, ask if there are extensions q_1 and q_2 of p such that for some x,

$$\Phi^q_{e_1}(x) \downarrow \neq \Phi^q_{e_2}(x) \downarrow.$$

(I will loosely call such q_1 and q_2 an e-split or simply a split.)

Note the question is Σ^0_1.
Classical Cone Avoiding: Finding Splits

Proposition
Given C *nonrecursive, there is a nonrecursive set* $A \not\geq_T C$.

Proof (Sketch)
It is easy to make A nonrecursive.

We use Cohen forcing to satisfy requirements $\Phi^A_e \neq C$ for all $e \in \omega$.

Given an initial segment p, ask if there are extensions q_1 and q_2 of p such that for some x,

$$\Phi^q_1(x) \downarrow \neq \Phi^q_2(x) \downarrow.$$

(I will loosely call such q_1 and q_2 an *e-split* or simply a split.)

Note the question is Σ^0_1.
Classical Cone Avoiding: Finding Splits

Proposition

Given C nonrecursive, there is a nonrecursive set $A \not\geq_T C$.

Proof (Sketch)

It is easy to make A nonrecursive.

We use Cohen forcing to satisfy requirements $\Phi^A_e \neq C$ for all $e \in \omega$.

Given an initial segment p, ask if there are extensions q_1 and q_2 of p such that for some x,

$$\Phi^q_1(x) \downarrow \neq \Phi^q_2(x) \downarrow.$$

(I will loosely call such q_1 and q_2 an e-split or simply a split.)

Note the question is Σ^0_1.

Classical Cone Avoiding: Finding Splits

Proposition

Given C nonrecursive, there is a nonrecursive set $A \not\geq_T C$.

Proof (Sketch)

It is easy to make A nonrecursive.

We use Cohen forcing to satisfy requirements $\Phi_e^A \neq C$ for all $e \in \omega$.

Given an initial segment p, ask if there are extensions q_1 and q_2 of p such that for some x,

$$\Phi_e^{q_1}(x) \downarrow \neq \Phi_e^{q_2}(x) \downarrow.$$

(I will loosely call such q_1 and q_2 an e-split or simply a split.)

Note the question is Σ^0_1.
Proposition

Given C nonrecursive, there is a nonrecursive set \(A \not\geq_T C \).

Proof (Sketch)
It is easy to make \(A \) nonrecursive.

We use Cohen forcing to satisfy requirements \(\Phi_e^A \neq C \) for all \(e \in \omega \).

Given an initial segment \(p \), ask if there are extensions \(q_1 \) and \(q_2 \) of \(p \) such that for some \(x \),

\[
\Phi_e^{q_1}(x) \downarrow \neq \Phi_e^{q_2}(x) \downarrow.
\]

(I will loosely call such \(q_1 \) and \(q_2 \) an *e-split* or simply a split.)

Note the question is \(\Sigma_1^0 \).
Classical Cone Avoiding: Finding Splits

Proposition

Given C nonrecursive, there is a nonrecursive set $A \not\geq_T C$.

Proof (Sketch)

It is easy to make A nonrecursive.

We use Cohen forcing to satisfy requirements $\Phi^A_e \neq C$ for all $e \in \omega$.

Given an initial segment p, ask if there are extensions q_1 and q_2 of p such that for some x,

$$\Phi^q_1(x) \downarrow \neq \Phi^q_2(x) \downarrow.$$

(I will loosely call such q_1 and q_2 an e-split or simply a split.)

Note the question is Σ^0_1.
Case 1: There is a split.

Then one of the values $\Phi_{e_1}^{q_1}(x)$ and $\Phi_{e_2}^{q_2}(x)$ must disagree with $C(x)$, choose the extension which give the disagreement.

Case 2: There is no split.

Then if Φ_e^A is total and $p \subseteq A$ then Φ_e^A is recursive. Φ_e^A cannot compute the nonrecursive set C.
Case 1: There is a split.

Then one of the values \(\Phi^{q_1}_e(x) \) and \(\Phi^{q_2}_e(x) \) must disagree with \(C(x) \), choose the extension which give the disagreement.

Case 2: There is no split.

Then if \(\Phi^A_e \) is total and \(p \subset A \) then \(\Phi^A_e \) is recursive. \(\Phi^A_e \) cannot compute the nonrecursive set \(C \).
A Useful Decomposition

Theorem (Cholak, Jockusch and Slaman, 2001)

\[\text{RT}_2^2 = \text{COH} + \text{SRT}_2^2. \]

- This decomposition turns out to be extremely useful.
- Thus, we can (iteratively) add a solution to COH and then a solution to SRT\(_2^2\), instead of adding a solution to RT\(_2^2\).
- (Other combinatorial principles weaker than RT\(_2^2\) can often be decomposed in a similar fashion.)
A Useful Decomposition

Theorem (Cholak, Jockusch and Slaman, 2001)

\[RT_2^2 = COH + SRT_2^2. \]

▶ This decomposition turns out to be extremely useful.

▶ Thus, we can (iteratively) add a solution to COH and then a solution to SRT_2^2, instead of adding a solution to RT_2^2.

▶ (Other combinatorial principles weaker than RT_2^2 can often be decomposed in a similar fashion.)
A Useful Decomposition

Theorem (Cholak, Jockusch and Slaman, 2001)

$$\text{RT}_2^2 = \text{COH} + \text{SRT}_2^2.$$

- This decomposition turns out to be extremely useful.
- Thus, we can (iteratively) add a solution to COH and then a solution to SRT$_2^2$, instead of adding a solution to RT$_2^2$.
- (Other combinatorial principles weaker than RT$_2^2$ can often be decomposed in a similar fashion.)
A Useful Decomposition

Theorem (Cholak, Jockusch and Slaman, 2001)

\[\text{RT}_2^2 = \text{COH} + \text{SRT}_2^2. \]

- This decomposition turns out to be extremely useful.
- Thus, we can (iteratively) add a solution to COH and then a solution to SRT$_2^2$, instead of adding a solution to RT$_2^2$.
- (Other combinatorial principles weaker than RT$_2^2$ can often be decomposed in a similar fashion.)
Let R be an infinite set and $R^s = \{t|(s,t) \in R\}$. A set G is said to be R-cohesive if for all s, either $G \cap R^s$ is finite or $G \cap \overline{R^s}$ is finite.

The cohesive principle COH states that for every R, there is an infinite G that is R-cohesive.

We say that a coloring f for pairs is stable, if for all x,

$$\lim_{y \to \infty} f(x, y)$$

exists.

SRT$_2$ states that every stable coloring of pairs has a solution.
COH and SRT$_2^2$

- Let R be an infinite set and $R_s = \{ t \mid (s, t) \in R \}$. A set G is said to be R-cohesive if for all s, either $G \cap R_s$ is finite or $G \cap \overline{R_s}$ is finite.

- The cohesive principle COH states that for every R, there is an infinite G that is R-cohesive.

- We say that a coloring f for pairs is stable, if for all x,

$$\lim_{y \to \infty} f(x, y)$$

exists.

- SRT$_2^2$ states that every stable coloring of pairs has a solution.
COH and SRT_2^2

- Let R be an infinite set and $R^s = \{t|(s, t) \in R\}$. A set G is said to be R-cohesive if for all s, either $G \cap R^s$ is finite or $G \cap \overline{R^s}$ is finite.

- The cohesive principle COH states that for every R, there is an infinite G that is R-cohesive.

- We say that a coloring f for pairs is stable, if for all x,

$$\lim_{y \to \infty} f(x, y)$$

exists.

- SRT_2^2 states that every stable coloring of pairs has a solution.
Let R be an infinite set and $R^s = \{t|(s, t) \in R\}$. A set G is said to be R-cohesive if for all s, either $G \cap R^s$ is finite or $G \cap \overline{R^s}$ is finite.

The cohesive principle COH states that for every R, there is an infinite G that is R-cohesive.

We say that a coloring f for pairs is stable, if for all x,

$$\lim_{y \to \infty} f(x, y)$$

exists.

SRT$_2^2$ states that every stable coloring of pairs has a solution.
An Equivalent Decomposition

- A stable coloring naturally induces a partition of ω into two Δ^0_2 sets.

- Let D^2_2 be the statement: Every Δ^0_2 set contains an infinite subsets either as a subset or as a subset of its complement.

- $RT^2_2 = D^2_2 + COH.$
An Equivalent Decomposition

- A stable coloring naturally induces a partition of \(\omega \) into two \(\Delta^0_2 \) sets.

- Let \(D^2_2 \) be the statement: Every \(\Delta^0_2 \) set contains an infinite subsets either as a subset or as a subset of its complement.

- \(RT^2_2 = D^2_2 + COH. \)
A stable coloring naturally induces a partition of ω into two Δ^0_2 sets.

Let D^2_2 be the statement: Every Δ^0_2 set contains an infinite subsets either as a subset or as a subset of its complement.

$RT^2_2 = D^2_2 + COH.$
The following is a weaker version of Jockusch and Stephan (1993)

Theorem

*Let R be a recursive set and C nonrecursive. Then there is an R-cohesive set G with $C \not\leq_T G$.***

We use (effective) Mathias forcing.

- The conditions are pairs (σ, X) where σ is a finite set, X is an infinite set and $\max \sigma < \min X$.
- $(\tau, Y) \leq (\sigma, X)$ if $\tau \supseteq \sigma$, $Y \subseteq X$ and $\tau \setminus \sigma \subseteq X$.

We say the forcing is recursive if the sets X in the definition are recursive.
COH and cone avoiding

The following is a weaker version of Jockusch and Stephan (1993)

Theorem

Let R be a recursive set and C nonrecursive. Then there is an R-cohesive set G with C ∉ T G.

We use (effective) Mathias forcing.

- The conditions are pairs \((\sigma, X)\) where \(\sigma\) is a finite set, \(X\) is an infinite set and \(\max \sigma < \min X\).
- \((\tau, Y) \leq (\sigma, X)\) if \(\tau \supseteq \sigma\), \(Y \subseteq X\) and \(\tau \setminus \sigma \subseteq X\).

We say the forcing is recursive if the sets \(X\) in the definition are recursive.
Proof Sketch

Fix R and C. The set $D_s = \{ (\sigma, X) : X \subset R^s \lor X \subset (\overline{R}^s) \}$ is dense. That settles R-cohesiveness.

Use the same split finding trick to do cone avoiding (just extend σ as in the classical case).
Fix R and C. The set $D_s = \{(\sigma, X) : X \subset R^s \lor X \subset (\overline{R}^s)\}$ is dense. That settles R-cohesiveness.

Use the same split finding trick to do cone avoiding (just extend σ as in the classical case).
The following is a weaker version of Seetapun and Slaman (1995)

Theorem

Let D be a Δ^0_2 set and C be a nonrecursive set. Then there is an infinite set H such that either $H \subset D$ or $H \subset \overline{D}$ with $C \not\leq_T H$.

Main difficulty: When we find a split, it may involve both element in D and \overline{D}.

Q: Is there a way to find “D-safe” splits?
The following is a weaker version of Seetapun and Slaman (1995)

Theorem

Let D be a Δ^0_2 set and C be a nonrecursive set. Then there is an infinite set H such that either $H \subset D$ or $H \subset \overline{D}$ with $C \not\leq_T H$.

Main difficulty: When we find a split, it may involve both element in D and \overline{D}.

Q: Is there a way to find “D-safe” splits?
D_2^2 and cone avoiding

The following is a weaker version of Seetapun and Slaman (1995)

Theorem

Let D be a Δ^0_2 set and C be a nonrecursive set. Then there is an infinite set H such that either $H \subset D$ or $H \subset \overline{D}$ with $C \not\leq^T H$.

Main difficulty: When we find a split, it may involve both element in D and \overline{D}.

Q: Is there a way to find “D-safe” splits?
Blobs and Seetapun Trees

- A sequence of *blobs* is just a recursive sequence of finite sets \tilde{o} such that for each s less than the length of the sequence, $\max o_s < \min o_{s+1}$.

- Let \tilde{o} be a finite sequence of blobs, say of length h. Consider the set T of all choice functions σ with domain h such that $\sigma(s) \in o_s$. T can be viewed naturally as a tree, called the *Seetapun tree* associated with \tilde{o}.

- For a Σ^0_1-formula $\psi(G)$, we will search for blobs o such that $\psi(o)$ holds.

- For example, for cone avoiding, we are looking for a finite set o having a split $q_1, q_2 \subset o$.
Blobs and Seetapun Trees

- A sequence of *blobs* is just a recursive sequence of finite sets \vec{o} such that for each s less than the length of the sequence, $\max o_s < \min o_{s+1}$.

- Let \vec{o} be a finite sequence of blobs, say of length h. Consider the set T of all choice functions σ with domain h such that $\sigma(s) \in o_s$. T can be viewed naturally as a tree, called the *Seetapun tree* associated with \vec{o}.

- For a Σ^0_1-formula $\psi(G)$, we will search for blobs o such that $\psi(o)$ holds.

- For example, for cone avoiding, we are looking for a finite set o having a split $q_1, q_2 \subset o$.
A sequence of *blobs* is just a recursive sequence of finite sets \vec{o} such that for each s less than the length of the sequence, $\max o_s < \min o_{s+1}$.

Let \vec{o} be a finite sequence of blobs, say of length h. Consider the set T of all choice functions σ with domain h such that $\sigma(s) \in o_s$. T can be viewed naturally as a tree, called the *Seetapun tree* associated with \vec{o}.

For a Σ^0_1-formula $\psi(G)$, we will search for blobs o such that $\psi(o)$ holds.

For example, for cone avoiding, we are looking for a finite set o having a split $q_1, q_2 \subset o$.
Blobs and Seetapun Trees

- A sequence of *blobs* is just a recursive sequence of finite sets \(\vec{o} \) such that for each \(s \) less than the length of the sequence, \(\max o_s < \min o_{s+1} \).

- Let \(\vec{o} \) be a finite sequence of blobs, say of length \(h \). Consider the set \(T \) of all choice functions \(\sigma \) with domain \(h \) such that \(\sigma(s) \in o_s \). \(T \) can be viewed naturally as a tree, called the *Seetapun tree* associated with \(\vec{o} \).

- For a \(\Sigma_1^0 \)-formula \(\psi(G) \), we will search for blobs \(o \) such that \(\psi(o) \) holds.

- For example, for cone avoiding, we are looking for a finite set \(o \) having a split \(q_1, q_2 \subset o \).
Seetapun Disjunctions

Definition
Given a Σ^0_1-formula $\psi(G)$, an Seetapun disjunction for ψ is a pair (\bar{o}, S), where \bar{o} is a sequence of blobs of length $h > 0$ and S is the Seetapun tree associated with \bar{o}, such that:

(i) For each $s < h$, $\psi(o_s)$ holds “independently”.
(ii) For each maximal branch τ of S, there exists a finite subset $\iota \subseteq \tau$ such that $\psi(\iota)$ holds. We refer to the set ι as a thread (in τ).

Key observation: For an Seetapun disjunction, either there is a blob $o \subseteq D$ or there is a thread $\iota \subseteq \bar{D}$. Seetapun disjunction is D-save!
Seetapun Disjunctions

Definition
Given a Σ^0_1-formula $\psi(G)$, an **Seetapun disjunction** for ψ is a pair (\vec{o}, S), where \vec{o} is a sequence of blobs of length $h > 0$ and S is the Seetapun tree associated with \vec{o}, such that:

(i) For each $s < h$, $\psi(o_s)$ holds “independently”.

(ii) For each maximal branch τ of S, there exists a finite subset $\nu \subseteq \tau$ such that $\psi(\nu)$ holds. We refer to the set ν as a **thread** (in τ).

Key observation: For an Seetapun disjunction, either there is a blob $o \subseteq D$ or there is a thread $\nu \subseteq \overline{D}$. Seetapun disjunction is D-save!
Proof Sketch

Fix Δ_2^0 set D and nonrecursive set C. We want to find and infinite $H \subset D$ or $\subset \overline{D}$ satisfying

$$R_{e,i} : \Phi^H_e \neq C \lor \Phi^H_i \neq C.$$

We recursively enumerate blobs containing an e-split.

Case 1. This sequence of blobs is finite, i.e., after $\langle o_i : i \leq s \rangle$ there is no more e-splits.

Then we simply move the construction “above the last blob”. We refer this as skipping.
Proof Sketch

Fix Δ^0_2 set D and nonrecursive set C. We want to find and infinite $H \subset D$ or $\subset \overline{D}$ satisfying

$$R_{e,i} : \Phi^H_e \neq C \lor \Phi^H_i \neq C.$$

We recursively enumerate blobs containing an e-split.

Case 1. This sequence of blobs is finite, i.e., after $\langle o_i : i \leq s \rangle$ there is no more e-splits.

Then we simply move the construction “above the last blob”. We refer this as skipping.
Fix Δ^0_2 set D and nonrecursive set C. We want to find and infinite $H \subset D$ or $\subset \bar{D}$ satisfying

$$R_{e,i} : \Phi^H_e \neq C \lor \Phi^H_i \neq C.$$

We recursively enumerate blobs containing an e-split.

Case 1. This sequence of blobs is finite, i.e., after $\langle o_i : i \leq s \rangle$ there is no more e-splits.

Then we simply move the construction “above the last blob”. We refer this as *skipping*.
Case 2. The sequence of blobs is infinite. Then we form Seetapun tree along the way and check if every branch τ contains an i-split.

Subcase 2.1. Every branch τ contains an i-split, i.e., we found an Seetapun disjunction.

Then either D contains a blob o or \overline{D} contains a thread ι. Say $D \supset o$. We choose the subset of o which gives us the value $\neq C$.

Subcase 2.2. No Seetapun disjunction occurs.

Then we get an infinite subtree T of the Seetapun tree. Any infinite branch will not see an i-split.
Proof Sketch (conti.)

Case 2. The sequence of blobs is infinite. Then we form a Seetapun tree along the way and check if every branch τ contains an i-split.

Subcase 2.1. Every branch τ contains an i-split, i.e., we found a Seetapun disjunction.

Then either D contains a blob o or \overline{D} contains a thread ι. Say $D \supset o$. We choose the subset of o which gives us the value $\neq C$.

Subcase 2.2. No Seetapun disjunction occurs.

Then we get an infinite subtree T of the Seetapun tree. Any infinite branch will not see an i-split.
Case 2. The sequence of blobs is infinite. Then we form Seetapun tree along the way and check if every branch τ contains an i-split.

Subcase 2.1. Every branch τ contains an i-split, i.e., we found an Seetapun disjunction.

Then either D contains a blob o or \overline{D} contains a thread ι. Say $D \supset o$. We choose the subset of o which gives us the value $\neq C$.

Subcase 2.2. No Seetapun disjunction occurs.

Then we get an infinite subtree T of the Seetapun tree. Any infinite branch will not see an i-split.
Proof Sketch (conti.)

Case 2. The sequence of blobs is infinite. Then we form Seetapun tree along the way and check if every branch τ contains an i-split.

Subcase 2.1. Every branch τ contains an i-split, i.e., we found an Seetapun disjunction.

Then either D contains a blob o or \overline{D} contains a thread ι. Say $D \supset o$. We choose the subset of o which gives us the value $\neq C$.

Subcase 2.2. No Seetapun disjunction occurs.

Then we get an infinite subtree T of the Seetapun tree. Any infinite branch will not see an i-split.
Proof Sketch (conti.)

Case 2. The sequence of blobs is infinite. Then we form Seetapun tree along the way and check if every branch τ contains an i-split.

Subcase 2.1. Every branch τ contains an i-split, i.e., we found an Seetapun disjunction.

Then either D contains a blob o or \overline{D} contains a thread ι. Say $D \supset o$. We choose the subset of o which gives us the value $\neq C$.

Subcase 2.2. No Seetapun disjunction occurs.

Then we get an infinite subtree T of the Seetapun tree. Any infinite branch will not see an i-split.
This is only a sketch

The above sketch overlooked the interaction between requirements; and selection of the infinite set.

For a complete proof (not mentioning Seetapun disjunctions), reader can refer to Hirschfeldt *Slicing the Truth*, World Scientific, 2015.
This is only a sketch

The above sketch overlooked the interaction between requirements; and selection of the infinite set.

For a complete proof (not mentioning Seetapun disjunctions), reader can refer to Hirschfeldt *Slicing the Truth*, World Scientific, 2015.
An application

- (Chong, Slaman and Yang 2012) Stable Ramsey’s Theorem for pairs does not imply Ramsey’s Theorem for Pairs.

- The idea of Seetapun disjunction is important in the proof.

- To distinguish Case 1 and Case 2, one needs 0″.
An application

▶ (Chong, Slaman and Yang 2012) Stable Ramsey’s Theorem for pairs does not imply Ramsey’s Theorem for Pairs.

▶ The idea of Seetapun disjunction is important in the proof.

▶ To distinguish Case 1 and Case 2, one needs $0''$.
An application

- (Chong, Slaman and Yang 2012) Stable Ramsey’s Theorem for pairs does not imply Ramsey’s Theorem for Pairs.

- The idea of Seetapun disjunction is important in the proof.

- To distinguish Case 1 and Case 2, one needs $0''$.
Nonstandard model

- Nonstandard models are crucial in the proof.
 - We divide M many requirements into ω many blocks.
 - The case 1/case 2 switch for each block needs one bit information.
 - In some nonstandard model, we can code ω many bits by a single number a.
 - Using a, 0′ is sufficient to carry out the construction, not 0″.

- It is known that the method does not apply to ω.

- Question: What happens in ω-models?
Nonstandard model

- Nonstandard models are crucial in the proof.
 - We divide M many requirements into ω many blocks.
 - The case 1/case 2 switch for each block needs one bit information.
 - In some nonstandard model, we can code ω many bits by a single number a.
 - Using a, $0'$ is sufficient to carry out the construction, not $0''$.

- It is known that the method does not apply to ω.

- Question: What happens in ω-models?
Nonstandard model

- Nonstandard models are crucial in the proof.
 - We divide M many requirements into ω many blocks.
 - The case 1/case 2 switch for each block needs one bit information.
 - In some nonstandard model, we can code ω many bits by a single number a.
 - Using a, $0'$ is sufficient to carry out the construction, not $0''$.

- It is known that the method does not apply to ω.

- Question: What happens in ω-models?
Nonstandard models are crucial in the proof.

- We divide M many requirements into ω many blocks.
- The case 1/case 2 switch for each block needs one bit information.
- In some nonstandard model, we can code ω many bits by a single number a.
- Using a, $0'$ is sufficient to carry out the construction, not $0''$.

- It is known that the method does not apply to ω.

- Question: What happens in ω-models?