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Introduction

The aim of this talk: to explain some basic ideas of proof theory
(esp. cut-elimination theorem) for a “strong system” called
Π1

1-CA.

esp., the collapsing theorem (impredicative cut-elimination).
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Introduction

Some history of proof theory (ordinal analysis):

The birth of proof theory (consistency proof) by D. Hilbert
and W. Ackermann (ε-substitution).

The founder of ordinal analysis via cut-elimination: G.
Gentzen (1936, 1938, 1943).

Gentzen’s result: ε0 is the least ordinal for showing the
consistency of PA.

Ordinals after Gentzen: a tool for a classification of formal
theories according to the “strength of a given theory”
(proof-theoretic ordinal).

Informally: the proof-theoretic ordinal of T = l.u.b. of the sizes of
cut-free proofs in T or T ∞ (of some formula).

|PA| = ε0, |RA| = Γ0, |ID1| = ψ(εΩ+1) . . .
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Introduction

Some history of proof theory (after Gentzen):

Ordinal analysis for impredicative subsystems of analysis
like Π1

1-CA: G. Takeuti and his school (1950’-1970’s).

German School (“infinitary proof theory”) : Schütte,
Buchholz, Pohlers, Jäger (1970’s-1980’s).

The recent breakthrough of ordinal analysis up to Π1
2-CA:

Rathjen and Arai (1990’s-).
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Buchholz, Pohlers, Jäger (1970’s-1980’s).

The recent breakthrough of ordinal analysis up to Π1
2-CA:

Rathjen and Arai (1990’s-).

4 / 54



Introduction

Another aspect of proof theory:

The goal of Hilbert’s program: to give finitistic meaning to ideal
elements like ∀,∃ in arithmetic with a restricted induction
(ε-substitution).

The main goal of Gentzen’s consistency proof in 1936 is to give
finitistic meaning to transfinite propositions of PA.
cf. Dialectica interpretation, proof mining.

Takeuti’s work: a reduction of impredicative comprehension to
inductive definition (ordinal diagrams).

Works by German school: more transparent ways of reductions
of impredicative comprehension to some constructive grounds
(e.g., inductive definitions): Analysis of Impredicativity
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Introduction

Finitary proof theory by Gentzen-Takeuti-Arai and infinitary proof
theory by Schütte-Buchholz-Pohlers-Rathjen.

Advantages of infinitary proof theory:

.

.

.

1 it is easy to understand cut-elimination theorems,

.

.

.

2 ordinal notations are “read off” from cut-elimination
procedures.

In this talk we explain a major method: the Ω-rule by Buchholz.

The Ω-rule: a reduction of Π1
1-CA to inductive definitions.

Another method due to Pohlers: Local predicativity.

cf. Thierry Coquand’s slides:
http://www.cse.chalmers.se/ coquand/proof.html
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Part I: the Method of the ω-Rule.

Part II: the Method of the Ω-Rule.

Part III: An Extension of the Ω-Rule.
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Part I: the Method of the ω-Rule.
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Idea of the ω-Rule

A germ of infinitary proof figure: Brouwer’s proof for the Bar
Induction(1927).

Idea of infinitary proof figure: we can explicitly write all
calculations or computations behind finite proof figure.

....
A(0)

[A(x)]....
A(sx)

∀xA Ind

....
A(0)

....
A(0)....
A(s0)

....
A(0)....
A(s0)....
A(ss0). . .

∀xA ω-rule

One observation by Gentzen: cut-rule behind induction.

Another (hidden) observation by Takeuti: cut-rule behind Π1
1-CA.
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Idea of the ω-Rule

ω-arithmetic (PA∞): obtained by replacing induction axiom by the
following infinitary rule:

A(0),A(1), ...for all n ∈ ω
∀xA(x)

The index set of the ω-rule: the set of natural numbers.

The ω-rule satisfies the subformula property.

The full cut-elimination theorem will hold for PA∞ while Gentzen
proved a partial cut-elimination theorem for PA in 1938.

G. Gentzen, “Die Widerspruchfreiheit der reinen Zahlentheorie”, 1936
(implicit use of the ω-rule).

G. Gentzen, “Neue Fassung des Widerspruchsfreiheitsbeweises für die reine
Zahlentheorie”, 1938 (c.e.for empty sequent).
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Infinitary System PA∞

.

Definition

.

.

.

Let L be the language for first-order arithmetic containing
∧

,
∨

,∀,∃.

L: without free number variables.

Negation is defined by de Morgan’s laws: ¬(A∧B) := ¬A∨¬B,
¬(A∨B) := ¬A∧¬B, ¬∀xA : ∃x¬A, ¬∃xA := ∀x¬A.

We use Tait’s calculus (one-sided sequent calculus).

Γ (or ∆, . . . ) : a set of formulas.

Only principal and minor formulas are explicitly shown, and
weakning and contraction are implicitly assumed.

Formula A or ¬A where A is atomic is called a literal, TRUE :=
the set of all true literals (Ex: 2+1 = 3).
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Infinitary System PA∞

.

Definition

.

.

.

Inference rules of PA∞ :

(Ax∆) ∆ where ∆ = {A} ⊆ TRUE or ∆ = {C,¬C}

(
∧

A0∧A1
)

A0 A1

A0 ∧A1
(
∨k

A0∧A1
)

Ak

A0 ∨A1
where k ∈ {0,1}

(
∧

∀xA)
. . .A(x/n) . . . for all n ∈ ω

∀xA (
∨k

∃xA)
A(x/k)
∃xA where k ∈ ω

(CutA)
A ¬A

/0
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Cut-Elimination for PA∞

.

Definition

.

.

.

rk(A) is defined as follows.

.

.
.

1 rk(A) := 0 if A is a literal.

.

.

.

2 rk(A∧B) := rk(A∨B) := max(rk(A),rk(B))+1.

.

.

.

3 rk(∀xA(x)) := rk(∃xA(x)) := rk(A(0))+1.

.

Definition

.

.

.

Let I be an inference symbol and d ∈ PA∞. Then dg(I) and dg(d) are
defined as follows.

.

.

.

1 dg(I) := rk(C)+1 if I = CutC.

.

.

.

2 dg(I) := 0 otherwise.

.

.

.

3 dg(I(dτ)τ∈I) := sup({dg(I)}∪{dg(dτ)|τ ∈ I}).
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Cut-Elimination for PA∞

The notation d `m Γ : d is a derivation of Γ and its cut-rank is ≤ m.

.

Theorem (One-Step Reduction)

.

.

.

We define an operator RC such that
if d0 `m Γ,C, d1 `m Γ,¬C and rk(C) ≤ m, then RC(d0,d1) `m Γ.

Proof. By induction on d0 and d1. Consider only the crucial cases:

Case 1.

If d0 = AxC,¬C, then d0 `m Γ′,¬C,C. Thus ¬C ∈ Γ. We define

RC(d0,d1) := d1 `m Γ.

Case 2.

Assume that d0 =
∧

∀xA(d0i)i∈ω and d1 =
∨k

∃xA(d10) so that
d0i `m Γ,A(i),∀xA and d10 `m Γ,A(k),∃xA.

14 / 54



Cut-Elimination for PA∞

By IH, we have RC(d0k,d1) `m Γ,A(k) and RC(d0,d10) `m Γ,¬A(k).
Thus we obtain the required derivation by applying a new cut with its
cut-formula A(k).

RC(d0,d1) := CutA(k)(RC(d0k,d1),RC(d0,d10)) `m Γ.

Note that rk(A(k)) < rk(∀xA) < m. �

Remark: the subformula property rk(A(k)) < rk(∀xA).
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Cut-Elimination for PA∞

Then we can define an operator E reducing cut-rank by 1.

.

Theorem (Cut-Reduction)

.

.

.

We can define an operator E on derivations in PA∞ such that if
d `m+1 Γ, then E (d) `m Γ.

Proof. Let d be CutC(d0,d1). Then E (d) is defined using R.

E (d) := RC(E (d0),E (d1)).�

Moreover we can eliminate all cuts if we want.

.

Theorem (Predicative Cut-Elimination)

.

.

.

We can define an operator Eω on derivations in PA∞ such that
if d `ω Γ, then Eω(d) `0 Γ.

Proof. By induction on d. Note that Eω is defined by arbitrary finite
applications of E . �
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Cut-Elimination for PA∞

.

Theorem (Embedding)

.

.

.

if d ` Γ where d ∈ PA and Γ: closed, then d∞ `<ω+ω
m Γ for some m ∈ ω.

(Indy
F,t)

¬F(x),F(sx)
¬F(0),F(t) (

∧y
∀xA)

A(x/y)
∀xA

Moreover, if d0 `α
m Γ,C, d1 `β

m Γ,¬C and rk(C) ≤ m, then
RC(d0,d1) `α]β

m Γ.

So, if d `α
m+1, then E (d) `ωα

m Γ.

Thus we can understand why Gentzen used the principle of
transfinite induction up to ε0 because

ε0 = sup{ωn(ω +ω)|n ∈ ω}

where ω0(α) := α and ωm+1(α) = ωωm(α).
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Part II: the Method of the Ω-Rule.
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Introduction

.

Definition

.

.

.

The language of BI (parameter-free) : if ∀XA(X),∃XA(X) are
formulas, then A(X) contains no second-order quantifier (arithmetical)
and no free predicate variable other than X .

.

Definition

.

.

.

The inference rules of BI: ones for first-order logical connectives,
arithmetical axiom, Cut, Schütte’s ω-rule and the rules for
second-order quantifiers：

A(Y )
∀XA(X)

∧
∀XA(X)

¬A(T )
∃X¬A(X)

∨T
∃X¬A(X)

∨T
∃X¬A(X) is just a parameter-free Π1

1-CA.

There is no subformula property in
∨T

∃X¬A(X)(T can be
complicated).
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Introduction

In the case of impredicative theory, cut-elimination is very
difficult.

The typical derivation d with an impredicative cut where Γ is
arithmetical:

...
Γ,A(X),∀XA(X)

Γ,∀XA(X)
∧

∀XA(X)

...
Γ,¬A(T ),∃X¬A(X)

Γ,∃X¬A(X)
∨T

∃X¬A(X)

Γ Cut
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Introduction

Takeuti transforms d into red(d) by replacing Π1
1-CA by the

substitution rule SubX
T and new Cut:

...
Γ,A(X),∀XA(X)

Γ,∀XA(X)

...
Γ,A(X),∀XA(X)

...
Γ,∃X¬A(X)

Γ,A(X)
Cut

Γ,A(T )
SubX

T

...
Γ,¬A(T ),∃X¬A(X)

Γ,∃X¬A(X)
Cut

Γ Cut
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Introduction

Question : why this cut-elimination process terminates ? In what
sense the transformed derivation red(d) is simpler than the
original derivation d ?

Obvious idea 1 : the number of cut-rules

=⇒ No : new cuts are inserted in red(d).

Obvious idea 2 : the length (or height) of derivation as a tree
=⇒ No : the length of red(d) seems to be longer than d.
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Introduction

Obvious idea 3: how about logical complexity of cut-formulas ?
cf. Gentzen’s proof of the cut-elimination for first-order logic

=⇒ No : the logical complexity of the new cut formula A(T ) may
be bigger than one of ∀XA(X)(impredicativity of comprehension
axiom).

How about Takeuti’s answer to this question ?
=⇒ The ordinal diagram assigned to red(d) is smaller (in some
sense) than one assigned to d.

But the system of ordinal diagrams is very complicated (esp.,
relations between ordinal diagrams).

It is quite difficult to understand how it works.

Question: How to show the termination of a reduction step ???
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Introduction

Buchholz’s Ω-rule: an intuitively easy way of proving c.e. for BI.

Cf. Buchholz, “Explaining the Gentzen-Takeuti reduction steps”,
AML, 2001.

Moreover: Buchholz’s proof = Takeuti’s one.
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Development of the Ω-Rule

Basic results via the Ω-rule and its extensions:

The birth of the Ω-rule: Buchholz’s Habilitationsschrift, Eine
Erweiterung der Schnitteliminationsmethode, 1977.

Ordinal analysis for iterated inductive definitions: Buchholz, LNM
897, 1981.

Ordinal analysis for subsystems of second-order arithmetic:
Buchholz and Schütte, 1988.

Game theoretic extension of the Ω-rule: Towsner, 2009.

Complete cut-elimination theorem: Akiyoshi and Mints, 2011.
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Development of the Ω-Rule

Other applications of the Ω-rule:

Ordinal analysis for Krsukal’s theorem: Rathjen and Weiermann,
1993.

Partial cut-elimination for modal µ-calculus: Jäger and Studer,
2011.

Complete cut-elimination for modal µ-calculus: Mints, 2012.

Advantages of the Ω-rule:

the c.e. process is intuitively easy to understand,

the formulation can be “ordinal-free”,

it gives a direct analysis of comprehension, especially, up to
iteration of Π1

1-CA.
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Idea of the Ω-rule

The Idea of Ω¬∀XA(X)：

.

. .
1 Γ,¬∀XA is equivalent to ∀XA → Γ.

.

.
.

2 Proof of ∀XA → Γ：a function from any proof of ∀XA into a
proof of Γ (BHK-reading).

.

.

.

3 Thus, when we have a proof of Γ,∆ for any cut-free proof of
∀XA,∆, we can assert Γ,¬∀XA.

Let q :
...

∆,A(X)

be an arithmetical cut-free proof of the sequent ∆,A(X) where ∆
is arithmetical and X < FV (∆).

BIΩ: an infinitary system with the Ω,Ω̃-rules.
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Formulation of the Ω-rule

Informal pictures of the Ω,Ω̃-rules:

(Ω)

{ ...
q : ∆,A(X)

}
...

. . .Γ,∆,¬∀XA . . .

Γ,¬∀XA (Ω̃)
Γ,A(X)

{ ...
q : ∆,A(X)

}
...

. . .Γ,∆ . . .

Γ !X!

The Ω-rule is used to interpret Π1
1-CA.

The index set |Ω| of Ω: the set of the derivations q.
Ω̃¬∀XA is a combination of Ω¬∀XA(X),

∧
∀XA,Cut∀XA(X) : hidden

impredicative cut.
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Formulation of the Ω-rule

.

Definition

.

.

.

Let BIΩ
0 be a cut-free ω-arithmetic. Define |Ω| := the set of

q =< d,X > with BIΩ
0 3 d ` A(X),∆q where ∆q is arithmetical and X is a

second-order variable.

. . .A(n) . . .

∀xA(x)
∧

∀xA(x)

.

Definition

.

.

.

The inference rules of BIΩ: ones for first-order connectives,
arithmetical axioms, Ω,Ω̃ and the following rules:

A ¬A
/0 Cut

A(Y )
∀XA(X)

∧
∀XA(X)
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Formulation of the Ω-rule

The Ω,Ω̃-rules:

(Ω¬∀XA)
. . .∆q . . . q ∈ |Ω|

¬∀XA (Ω̃¬∀XA)
A(X) . . .∆q . . . q ∈ |Ω|

/0 !X!

Since BIΩ
0 is ω-arithmetic, the set of q =< d,X > is

well-defined.
By quantification over the set |Ω| of q, the Ω,Ω̃-rules are
defined.
The definitions proceed by inductive definition.
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Interpretation of Π1
1-CA

rk(C) : the usual logical complexity of a formula C except that
rk(∀XA(X)) = rk(∃XA(X)) = 0.

dg(d) : the cut-rank of d defined using rk(C) where C is a
cut-formula in it.

We write `m Γ if there is a derivation d such that its end-sequent
is Γ and dg(d) ≤ m.

We define a one-step reduction operator RC in BIΩ as before.

.

Theorem (One-Step Reduction)

.

.

.

There is an operator RC such that
If d0 `m Γ,C, d1 `m Γ,¬C and rk(C) ≤ m, then RC(d0,d1) `m Γ.

Proof. By double induction on d0 and d1. RC replaces impredicative
cut by “hidden” impredicative cut Ω̃ and eliminates other cuts in the
standard way.
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Interpretation of Π1
1-CA

Assume d0 =
∧

∀XA(d00) `m Γ,∀XA, d1 = Ω(. . .d1q . . .) `m Γ,¬∀XA. Then
d00 `m Γ,A(X),∀XA and d1q `m Γ,∆,¬∀XA.

Using IH twice, we get RC(d00,d1) `m Γ,A(X) and RC(d0,d1q) `m Γ,∆.
Hence we have the required derivation via Ω̃:

Ω̃(RC(d00,d1), . . .RC(d0,d1q) . . .) `m Γ.�

.

Theorem (Substitution)

.

.

.

There is an operator S X
T such that if BIΩ

0 3 d `0 Γ, then
BIΩ

0 3 S X
T (d) `0 Γ[X/T ].

Proof. By induction on d. Notice that the operator preserves all
inference rules in d. The last inference rule of d cannot be Cut,Ω,Ω̃. �

Remark: S X
T is a key of the Ω-rule. In the iterated case, some care is

needed.
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Interpretation of Π1
1-CA

Consider an application of Π1
1-CA in BI:

...
Γ,¬A(T ),¬∀XA(X)

Γ,¬∀XA(X)

This derivation is embedded into BIΩ in the following way:

...
∆,A(X)
∆,A(T )

S X
T

...
Γ,¬A(T ),¬∀XA

. . .Γ,∆,¬∀XA . . .
RA(T )

Γ,¬∀XA Ω
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Interpretation of Impredicative Cut

How about the following impredicative cut ?

...
Γ,A(X),∀XA(X)

Γ,∀XA(X)

∧
∀XA(X)

...
Γ,¬A(T ),∃X¬A(X)

Γ,∃X¬A(X)
∨T
∃X¬A(X)

Γ Cut

Π1
1-CA

∨T
∃X¬A(X) is interpreted by Ω.

Cut is interpreted by R.

Thus the whole derivation is interpreted by Ω̃.

34 / 54



Interpretation of Impredicative Cut

...
Γ,A(X),∀XA(X)

...
Γ,∃X¬A(X)

Γ,A(X)
R

...
Γ,∀XA(X)

...
∆,A(X)
∆,A(T )

S X
T

...
Γ,¬A(T ),∃X¬A(X)

Γ,∆,∃X¬A(X)
R

. . .Γ,∆, . . .
R

Γ Ω̃

The notation . . .Γ,∆ . . . means that we have a proof Γ,∆ for any
given cut-free proof of ∆,A(X).

Informal picture of collapsing (impredicative c.e.) : taking a
subtree on the right hand side.

Moreover: Takeuti’s reduction = Buchholz’s collapsing.
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Predicative Cut-Elimination and Collapsing Theorem

The operation E reducing cut-rank by 1 is defined as before:

.

Theorem (Cut-Reduction)

.

.

.

If d `m+1 Γ, then E (d) `m Γ.

Proof. E (CutC(d0,d1)) := RC(E (d0),E (d1)). �

Moreover we define the operator D eliminating hidden cut Ω̃ as
Buchholz did. Recall that BIΩ

0 is cut-free ω-arithmetic.

.

Theorem (Collapsing)

.

.

.

If BIΩ 3 d `0 Γ and Γ is arithmetical, then BIΩ
0 3 D(d) ` Γ.

Proof. Since Γ is arithmetical, the last rule of d cannot be
Ω,

∧
∀XA. Moreover, it cannot be Cut. Hence the principal case is

that the last rule of d = Ω̃. In other cases we apply IH.

36 / 54



Predicative Cut-Elimination and Collapsing Theorem

Let d = Ω̃(d0, . . .dq . . .) such that d0 ` Γ,A(X) and dq ` Γ,∆. Since
Γ,A(X) is arithmetical, we have BIΩ

0 3 D(d0) ` Γ,A(X).

Now taking Γ as ∆ in dq, then dD(d0) ` Γ. Since dD(d0) is a sub
derivation of d, so we apply IH again: BIΩ

0 3 D(dD(d0)) ` Γ. �

(Ω̃)

....
Γ,A(X)

{ ...
q : ∆,A(X)

}
...

. . .Γ,∆ . . .

Γ !X!

37 / 54



A Simple Explanation of the Collapsing Theorem

Let d = Ω̃(d0, . . .dq . . .) such that d0 ` Γ,A(X) and dq ` Γ,∆.
Assume that there is the only one Ω̃ in d.

The key idea: d0 can be regarded as an “input” q by taking Γ as ∆q.

Then there is subderivation dd0 of d, which is completely cut-free
(without Ω̃). Moreover, dd0 ` Γ since Γ,∆d0 = Γ.

The collapsing step is taking a subderivation of a given derivation. If
needed, this process is iterated.

(Ω̃)

....
Γ,A(X)

{ ...
q : ∆,A(X)

}
...

. . .Γ,∆ . . .

Γ !X!
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Embedding Function from BI to BIΩ

The embedding function ()∞ from BI to BIΩ is a function such
that：

.

.
.

1 Π1
1-CA =⇒ Ω

.

.
.

2 impredicative cut =⇒ Ω̃

.

Theorem (Embedding of BI into BIΩ)

.

.

.

If BI 3 d ` Γ, then BIΩ 3 d∞ ` Γ.

Recall that BIΩ
0 is cut-free ω-arithmetic. Combining these theorems

obtained so far, we have the following:

.

Theorem

.

.

.

If BI 3 d ` Γ, then BIΩ
0 3 D(E m(d∞)) `0 Γ where Γ is arithmetical.
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Part III: An Extension of the Ω-Rule.
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Main Difficulty for Extending the Ω-Rule

Complete cut-elimination: c.e. for arbitrary sequents.

Why the collapsing is partial cut-elimination for arithmetical
formulas?
⇒ The domain of the Ω-rule contains only arithmetical proofs.

The main difficulty to extend the Ω-rule is to define |Ω|
(impredicativity of the Ω-rule).

But: if d ∈ |Ω| ranges over (not only arithmetical) all proofs, we
are led to circular.

Reason: we cannot quantifier over a domain of the Ω-rule if it
may contain the Ω-rule.
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Main Difficulty for Extending the Ω-Rule

The Ω-rule:

.

.
.

1 Take any q ∈ |Ω| such that q `0 A(x),∆.

.

.
.

2 If we have a proof f (q) ` Γ,¬∀XA,∆, then
Ω(. . . f (q) . . .) ` Γ,¬∀XA.

The key: quantification over |Ω|, the source of impredicativity of
the Ω-rule (inductive definition).

If q ∈ |Ω| might contain the Ω-rule, then we have assumed what
we want to define, hence vicious circle.

Our idea (joint with G.Mints): to extend the Ω-rule using Takeuti’s
notion of explicit/implicit inference.

42 / 54



Main idea

Main idea is to define the Ω-rule based on explicit/implicit distinction.

.

Definition (Takeuti)

.

.

.

A logical inference with the principal formula A is implicit if there is a
cut whose cut-formula is traced to A. Otherwise it’s called explicit.

Example: any logical inference of a derivation of empty sequent
is implicit (cf. Gentzen’s consistency proof of PA).

Observation: explicit/implicit distinction is preserved in the
process of cut-elimination.
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Main Idea

The domain of the Ω+-rule contains not only logical inferences
for arithmetical formulas, but

∨
¬∀XB.

Implicit Π1
1-CA: translated into the Ω-rule as Buchholz did.

Explicit Π1
1-CA: preserved, hence included into |Ω+|.

Example:
...

Γ,A(Y ),¬B(S)
Γ,A(Y ),¬∀XB

(
∨

¬∀XB)

Γ,∀XA,¬∀XB

...
Γ,¬A(T )
Γ,¬∀XA

(Ω)

Γ,¬∀XB Cut(Ω̃)
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Formulation of Ω+-Rule

.

Definition

.

.

.

Language of second-order arithmetic sorted by e, i.

Example: X(t)i,X(t)e,∀xAe,∀xAi,∀XAe,∀XAe,∃XAi,∃XAe.
Γe,∆e denotes sets of explicit formulas: Γe,∆e contains only formulas
like Ae.
Sequent : Γe,Πi.

.

Definition

.

.

.

BIΩ+

0 : two sorted version of BIΩ+

0 with
∨

¬∀XAe . Let τ , ι ∈ {e, i}.

Axiom: restricted to atomic C:

Cτ ,¬Cι AxCτ ,¬Cι

!Y !
A(Y )τ

∀XAτ
∧

∀XAτ
¬A(T )e

¬∀XAe
∨

¬∀XAe

. . .A(n)τ . . .

∀xAτ
∧

∀xAτ
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Formulation of Ω+-Rule

.

Definition

.

.

.

BIΩ+
: BIΩ+

0 with Ω+,Ω̃+,Cut.
|Ω+| = the set of q =< d,X > with BIΩ+

0 3 d ` A(X)i,∆e
q where all

formulas Bi ∈ ∆e
q are arithmetical.

. . .∆e
q . . .q ∈ |Ω+|
¬∀XAi Ω+

¬∀XA !Y !
A(Y )i . . .∆e

q . . .q ∈ |Ω+|
/0 Ω̃+

¬∀XA

Ci ¬Ci

/0

Remark: BIΩ+

0 contains
∨

¬∀XAe . Hence, ∆e
q may contain ∃XAe while ∆q

is just arithmetical in Buchholz’s original definition.
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One Step Reduction RC

.

Theorem (One-Step Reduction)

.

.

.

There is an operator RC on derivations in BIΩ+
such that

if d0 `m Γe,Πi,Ci, d1 `m Γe,Πi,¬Ci and rk(Ci) ≤ m, then
RC(d0,d1) `m Γe,Πi.

Proof.
If d0 =

∧
∀XB(X)i(d00) and d1 = Ω+(d1q)q∈|Ω+|, then

RC(d0,d1) := Ω̃+(RC(d00,d1),RC(d0,d1q))q∈|Ω+|. �
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Predicative Cut-Elimination Operator E

By applying RC, predicative cuts are eliminated:

.

Theorem (Cut-Reduction)

.

.

.

There is an operator E on derivations in BIΩ+
such that

if d `m+1 Γe,Πi, then E (d) `m Γe,Πi.

Proof. Familiar iteration of RC. �

Let E m be m-times application of E .

.

Theorem (Predicative C.E.)

.

.

.

if d `m+1 Γe,Πi, then E m(d) `0 Γe,Πi.

Remark: d `0 Γe,Πi may contain some impredicative cuts Ω̃+.
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Collapsing Operator D

A sequent Γ is called almost explicit if all i-marked formulas
Ai ∈ Γ are arithmetical.

Now we define a collapsing operator D for (not only arithmetical
but) arbitrary almost explicit sequent.

.

Theorem (Collapsing)

.

.

.

There is an operator D such that
if BIΩ+ 3 d `0 Γ where Γ is almost explicit, then BIΩ+

0 3 D(d) `0 Γ.

Proof. last(d) := the last inference symbol of d.
If last(d) =

∨T
¬∀XAe , set D(d) :=

∨T
¬∀XAe(D(d0)).

Remark:
∨T

¬∀XAe is included in BIΩ+

0 unlike Buchholz’s treatment.
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Collapsing Operator D

Another important case: last(d) = Ω̃+(di)i∈{0}∪|Ω+|.

Consider the leftmost premise: d0 `0 Γe,Πi,A(Y )i. By IH, we get
BIΩ+

0 3 D(d0) ` Γe,Πi,A(Y )i. Now D(d0) is regarded as “input” for Ω̃+.
Formally, define q0 := (D(d0),Y ), then q0 ∈ |Ω+|.

For the input D(d0), there should be an immediate subderivation dq0

of Ω̃+ s. t. dq0 `0 Γe,Πi.
Finally, apply IH to this dq0 :

D(d) := D(dq0) ∈ BIΩ+

0 . �

....
Γe,Πi,A(Y )i

{q : ∆e
q,A(Y )i}
....

. . .Γe,Πi,∆e
q . . . q ∈ |Ω+|

Γe,Πi,A(Y )i Ω̃+
¬∀XA ⇒

{q0 : Γe,Πi,A(Y )i}....
Γe,Πi

Γe,Πi D
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Complete Cut-Elimination Theorem for BIΩ+

By combining theorems obtained, we get the complete
cut-elimination theorem for BIΩ+

:

.

Theorem (Complete Cut-Elimination for BIΩ+
)

.

.

.

If BIΩ+ 3 d `m Γ where Γ is almost explicit, then BIΩ+

0 3 D(E m(d)) `0 Γ.

Proof. By Predicative Cut-Elimination and Collapsing Theorems. �
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Embedding of Π1
1-CA via the Ω+-Rule

Following Buchholz, we embed Π1
1-CA to BIΩ+

.

Difference from Buchholz: only implicit Π1
1-CA is translated into

the Ω+-rule (explicit Π1
1-CA: preserved).

BI: parameter-free Π1
1-CA with Schütte’s ω-rule.

Marking function m: assigning e or i to formulas A.

.

Theorem (Embedding)

.

.

.

If d ∈ BI, then d∞(m) `dg(d) Γ(d)m for any marking function m.

Proof.
If d = (

∨
¬∀XA(d0)) and m(¬∀XA) = ¬∀XAe, set

d∞(m) := (∨¬∀XAe(d∞(m)
0 )).

Otherwise:

d∞(m) := Ω+
¬∀XA(RA(T )(S

X
T (dq),d

∞(m[A(T )/i])
0 ))q∈|Ω+|. �
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Complete Cut-Elimination Theorem for BI

−→e : the marking function assigning e to each formula A in L.

d∗ : the result of deleting all marks in sequents and inference
rules of d.

.

Theorem (Complete Cut-Elimination for BI)

.

.

.

If d ∈ BI, then BI 3 (D(E n(d∞(−→e ))))∗ `0 Γ for some n.

Proof. By Embedding and C.C.E. for BIΩ+
Theorems. Note that the

inference rules in BIΩ+

0 become ones of BI after deleting marks. �

Remark: it is possible to iterate the Ω+-rule (Akiyoshi, 2011).
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Some Problems

Precise game theoretic explanation of the Ω-rule?

Extension of the Ω-rule to stronger system?

Analogy with Girard’s extension of computability
predicate(candidates of reducibility)?
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