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Introduction

@ The aim of this talk: to explain some basic ideas of proof theory
(esp. cut-elimination theorem) for a “strong system” called
I1}-CA.

esp., the collapsing theorem (impredicative cut-elimination).
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Introduction

@ Some history of proof theory (ordinal analysis):

e The birth of proof theory (consistency proof) by D. Hilbert
and W. Ackermann (e-substitution).
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Introduction

@ Some history of proof theory (ordinal analysis):

e The birth of proof theory (consistency proof) by D. Hilbert
and W. Ackermann (e-substitution).

e The founder of ordinal analysis via cut-elimination: G.
Gentzen (1936, 1938, 1943).

o Gentzen’s result: g is the least ordinal for showing the
consistency of PA.

e Ordinals after Gentzen: a tool for a classification of formal
theories according to the “strength of a given theory”
(proof-theoretic ordinal).

@ Informally: the proof-theoretic ordinal of T = l.u.b. of the sizes of
cut-free proofs in T or 7= (of some formula).

|PA| = &, |RA| =T, |ID1| = y(€a+1) - --



Introduction

@ Some history of proof theory (after Gentzen):

e Ordinal analysis for impredicative subsystems of analysis
like IT}-CA: G. Takeuti and his school (1950™-1970's).
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e Ordinal analysis for impredicative subsystems of analysis
like IT}-CA: G. Takeuti and his school (1950™-1970's).

e German School (“infinitary proof theory”) : Schiite,
Buchholz, Pohlers, Jager (1970’s-1980’s).

4/54



Introduction

@ Some history of proof theory (after Gentzen):

e Ordinal analysis for impredicative subsystems of analysis
like IT}-CA: G. Takeuti and his school (1950™-1970's).

e German School (“infinitary proof theory”) : Schiite,
Buchholz, Pohlers, Jager (1970’s-1980’s).

e The recent breakthrough of ordinal analysis up to I1}-CA:
Rathjen and Arai (1990’s-).



Introduction

Another aspect of proof theory:

@ The goal of Hilbert’s program: to give finitistic meaning to ideal
elements like Vv, 3 in arithmetic with a restricted induction
(e-substitution).

@ The main goal of Gentzen’s consistency proof in 1936 is to give
finitistic meaning to transfinite propositions of PA.

cf. Dialectica interpretation, proof mining.

@ Takeuti’s work: a reduction of impredicative comprehension to
inductive definition (ordinal diagrams).

@ Works by German school: more transparent ways of reductions
of impredicative comprehension to some constructive grounds
(e.g., inductive definitions): Analysis of Impredicativity



Introduction

@ Finitary proof theory by Gentzen-Takeuti-Arai and infinitary proof
theory by Schiitte-Buchholz-Pohlers-Rathjen.

@ Advantages of infinitary proof theory:

@ it is easy to understand cut-elimination theorems,
@ ordinal notations are “read off” from cut-elimination
procedures.

@ In this talk we explain a major method: the Q-rule by Buchholz.
@ The Q-rule: a reduction of I1}-CA to inductive definitions.

@ Another method due to Pohlers: Local predicativity.

cf. Thierry Coquand’s slides:
http://www.cse.chalmers.se/ coquand/proof.html



Part |: the Method of the w-Rule.

Part Il: the Method of the Q-Rule.

Part lll: An Extension of the Q-Rule.
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Part |: the Method of the w-Rule.
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Idea of the w-Rule

@ A germ of infinitary proof figure: Brouwer’s proof for the Bar
Induction(1927).

@ Idea of infinitary proof figure: we can explicitly write all
calculations or computations behind finite proof figure.

A:(_O)
ne A0 AG0)
4(0) A(sx) 4(0) AGO) A(ss0)...
VA Ind ViA w-rule

@ One observation by Gentzen: cut-rule behind induction.

@ Another (hidden) observation by Takeuti: cut-rule behind I1}-CA.



Idea of the w-Rule

@ w-arithmetic (PA*): obtained by replacing induction axiom by the
following infinitary rule:

A(0),A(1),...for all n€ @
VxA(x)

@ The index set of the w-rule: the set of natural numbers.
@ The w-rule satisfies the subformula property.

@ The full cut-elimination theorem will hold for PA* while Gentzen
proved a partial cut-elimination theorem for PA in 1938.

G. Gentzen, “Die Widerspruchfreiheit der reinen Zahlentheorie”, 1936
(implicit use of the w-rule).

G. Gentzen, “Neue Fassung des Widerspruchsfreiheitsbeweises fir die reine
Zahlentheorie”, 1938 (c.e.for empty sequent).
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Infinitary System PA~

Let L be the language for first-order arithmetic containing A, V,V,3.
@ L: without free number variables.

@ Negation is defined by de Morgan’s laws: —(A AB) := -AV =B,
—(AVB) :=-AA-B, "VxA : 3x-A, -3xA := Vx—A.
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Infinitary System PA~

Let L be the language for first-order arithmetic containing A, V,V,3.

L: without free number variables.

@ Negation is defined by de Morgan’s laws: —(A AB) := -AV =B,
—(AVB) :=-AA-B, "VxA : 3x-A, -3xA := Vx—A.

@ We use Tait’s calculus (one-sided sequent calculus).
@ I' (orA,...): aset of formulas.

@ Only principal and minor formulas are explicitly shown, and
weakning and contraction are implicitly assumed.

@ Formula A or —A where A is atomic is called a literal, TRUE :=
the set of all true literals (Ex: 2+ 1 = 3).
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Infinitary System PA~

Inference rules of PA* :

(Axa) A where A= {A} C TRUEor A={C,—C}

Ap Ay Ay
(/\AO/\Al)AO/\Al (\/AO/\AI)A VA, where k € {0,1}

A(x/n)... foralln € ® . A(x/k)

(Avxa) VxA (Vau) C3xA

where k € @

A A
(Cuta) —p—
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Cut-Elimination for PA~

rk(A) is defined as follows.

@ rk(A):=0if Ais aliteral.
© rk(AAB) :=rk(AV B) := max(rk(A),rk(B)) + 1.
Q rk(VxA(x)) := rk(3xA(x)) := rk(A(0)) + 1.

Definition

Let 7 be an inference symbol and d € PA*. Then dg(I) and dg(d) are
defined as follows.

@ dg(I) :=rk(C)+1if I = Cutc.
Q@ dg(1) := 0 otherwise.
Q dg(I(dy)cer) :=sup({dg(D)}U{dg(d;)|T €1}).
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Cut-Elimination for PA~

The notation d I, I : d is a derivation of I" and its cut-rank is < m.

Theorem (One-Step Reduction)

We define an operator % such that
ifdy+, T,C, dy F,, T',~C and rk(C) <m, then %C(do,dl) Fm .

Proof. By induction on dy and d;. Consider only the crucial cases:

Case 1.

If dy = Axc ¢, thendy -, I",—C,C. Thus —C € I'. We define
Re(dy,dy) :=dy b T

Case 2.

Assume that dy = Ay (doi)ico and dy = /%, 4 (d1o) so that
doi Fm T, A(i),¥xA and dig b T, A(k), FA.
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Cut-Elimination for PA~

By IH, we have Z¢(do,d1) b T, A(k) and Ze(do,dio) Fm T, —A(K).
Thus we obtain the required derivation by applying a new cut with its
cut-formula A(k).

Fc(do,dy) = Cuty)(%c(dor,dr),%Zc(do,d1o)) Fm T
Note that rk(A(k)) < rk(VxA) <m. O

Remark: the subformula property rk(A(k)) < rk(VxA).
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Cut-Elimination for PA~

Then we can define an operator & reducing cut-rank by 1.

Theorem (Cut-Reduction)

We can define an operator & on derivations in PA~ such that if
dbn T, then &(d) Fp, T

Proof. Let d be Cutc(dy,d;). Then &(d) is defined using Z.
g(d) = ﬂc(éa(do),g(dl)).ﬂ
Moreover we can eliminate all cuts if we want.

Theorem (Predicative Cut-Elimination)

We can define an operator &, on derivations in PA* such that
ifdFq T, then &y(d) o T.

Proof. By induction on d. Note that &, is defined by arbitrary finite
applications of £&. O
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Cut-Elimination for PA~

Theorem (Embedding)
ifd =T where d € PA andT': closed, then d -;°*® T for some m € o.

FRLFGs) L AR
“FO), () Ava) x4

(Indy,)

@ Moreover, if dy & T',C, d, - I',=C and rk(C) < m, then
Re(dy,dy) FEP T
@ So,ifd%,,, then &(d) F8" I
@ Thus we can understand why Gentzen used the principle of
transfinite induction up to g because
& = sup{o,(0+ o)|n € o}
where ay(a) := o and @, (@) = (@),
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Part II: the Method of the Q-Rule.
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Introduction

Definition

The language of BI (parameter-free) : if VXA(X),3XA(X) are
formulas, then A(X) contains no second-order quantifier (arithmetical)
and no free predicate variable other than X.

Definition

The inference rules of BI: ones for first-order logical connectives,
arithmetical axiom, Cut, Schitte’s w-rule and the rules for
second-order quantifiers :

AY) —A(T)

v e A T
VXA(X) Aexaw) IX—A(X) Vaxaw)

@ Iy 4 is just a parameter-free I1}-CA.

@ There is no subformula property in \/gxﬁA(X)(T can be
complicated).
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Introduction

@ In the case of impredicative theory, cut-elimination is very

difficult.
@ The typical derivation d with an impredicative cut where T is
arithmetical:
I A(X),VXA(X) A T,-A(T),3X-A(X) v
LVxA(x) 7% T Ex-A(X) Y
ut

r
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Introduction

@ Takeuti transforms d into red(d) by replacing I1}-CA by the
substitution rule Sub} and new Cur:

F,A(X),:VXA(X) F,HX;A(X)

: LA Cut :
,A(X),VXA(X) LA(T) T L A7), X AX)
T, VXA(X) T, 3X-A(X) u
T Cut
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Introduction

@ Question : why this cut-elimination process terminates ? In what
sense the transformed derivation red(d) is simpler than the
original derivation d ?

@ Obvious idea 1 : the number of cut-rules
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Introduction
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Introduction

@ Question : why this cut-elimination process terminates ? In what
sense the transformed derivation red(d) is simpler than the
original derivation d ?

@ Obvious idea 1 : the number of cut-rules
= No : new cuts are inserted in red(d).

@ Obvious idea 2 : the length (or height) of derivation as a tree
— No : the length of red(d) seems to be longer than 4.
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Introduction

@ Obvious idea 3: how about logical complexity of cut-formulas ?
cf. Gentzen’s proof of the cut-elimination for first-order logic
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Introduction

@ Obvious idea 3: how about logical complexity of cut-formulas ?
cf. Gentzen’s proof of the cut-elimination for first-order logic

= No : the logical complexity of the new cut formula A(T') may
be bigger than one of VXA (X)(impredicativity of comprehension
axiom).
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Introduction

@ Obvious idea 3: how about logical complexity of cut-formulas ?
cf. Gentzen’s proof of the cut-elimination for first-order logic
= No : the logical complexity of the new cut formula A(T') may
be bigger than one of VXA (X)(impredicativity of comprehension
axiom).

@ How about Takeuti’'s answer to this question ?

= The ordinal diagram assigned to red(d) is smaller (in some
sense) than one assigned to d.
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Introduction

@ Obvious idea 3: how about logical complexity of cut-formulas ?
cf. Gentzen’s proof of the cut-elimination for first-order logic

= No : the logical complexity of the new cut formula A(T') may
be bigger than one of VXA (X)(impredicativity of comprehension
axiom).

@ How about Takeuti’s answer to this question ?

= The ordinal diagram assigned to red(d) is smaller (in some
sense) than one assigned to d.

@ But the system of ordinal diagrams is very complicated (esp.,
relations between ordinal diagrams).

@ It is quite difficult to understand how it works.
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Introduction

@ Obvious idea 3: how about logical complexity of cut-formulas ?
cf. Gentzen’s proof of the cut-elimination for first-order logic

= No : the logical complexity of the new cut formula A(T') may
be bigger than one of VXA (X)(impredicativity of comprehension
axiom).

@ How about Takeuti’s answer to this question ?

= The ordinal diagram assigned to red(d) is smaller (in some
sense) than one assigned to d.

@ But the system of ordinal diagrams is very complicated (esp.,
relations between ordinal diagrams).

@ It is quite difficult to understand how it works.

@ Question: How to show the termination of a reduction step 7?77
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Introduction

@ Buchholz’s Q-rule: an intuitively easy way of proving c.e. for BL.

Cf. Buchholz, “Explaining the Gentzen-Takeuti reduction steps”,
AML, 2001.

@ Moreover: Buchholz’s proof = Takeuti’s one.
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Development of the Q-Rule

Basic results via the Q-rule and its extensions:

@ The birth of the Q-rule: Buchholz’s Habilitationsschrift, Eine
Erweiterung der Schnitteliminationsmethode, 1977.

@ Ordinal analysis for iterated inductive definitions: Buchholz, LNM
897, 1981.

@ Ordinal analysis for subsystems of second-order arithmetic:
Buchholz and Schitte, 1988.

@ Game theoretic extension of the Q-rule: Towsner, 2009.

@ Complete cut-elimination theorem: Akiyoshi and Mints, 2011.

25/54



Development of the Q-Rule

Other applications of the Q-rule:

@ Ordinal analysis for Krsukal’s theorem: Rathjen and Weiermann,
1993.

@ Partial cut-elimination for modal p-calculus: Jager and Studer,
2011.

@ Complete cut-elimination for modal p-calculus: Mints, 2012.
Advantages of the Q-rule:

@ the c.e. process is intuitively easy to understand,

@ the formulation can be “ordinal-free”,

@ it gives a direct analysis of comprehension, especially, up to
iteration of IT{-CA.
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Idea of the Q-rule

@ The ldea of Q_yx4(x) -

@ I',-vXA is equivalent to VXA —T.

@ Proof of YXA — I' : a function from any proof of VXA into a
proof of I (BHK-reading).

© Thus, when we have a proof of I', A for any cut-free proof of
VXA, A, we can assert I', -VXA.
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Idea of the Q-rule

@ The ldea of Q_yx4(x) -

@ I',-vXA is equivalent to VXA —T.

@ Proof of YXA — I' : a function from any proof of VXA into a
proof of I (BHK-reading).

© Thus, when we have a proof of I', A for any cut-free proof of
VXA, A, we can assert I', -VXA.

@ Letg:

AAX)

be an arithmetical cut-free proof of the sequent A,A(X) where A
is arithmetical and X ¢ FV(A).

@ BI“: an infinitary system with the Q,Q-rules.
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Formulation of the Q-rule

Informal pictures of the Q, Q-rules:

{q:A,ZA(X)} {q:A,zA(X)}

LTASVXA... _ TAX) ..TA..
T,—VXA (@) T

(Q) ¢
@ The Q-rule is used to interpret IT}-CA.
@ The index set |Q| of Q: the set of the derivations q.

@ Q_yxa is a combination of Q_yxax),AvxaCiityxax) : hidden
impredicative cut.
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Formulation of the Q-rule

Definition

Let BI? be a cut-free w-arithmetic. Define || := the set of
g=<d,X > with BI{ > d - A(X),A, where A, is arithmetical and X is a
second-order variable.

AG) Nvxa()

Definition

The inference rules of BI: ones for first-order connectives,
arithmetical axioms, Q,Q and the following rules:

A —A A(Y)
g Cut TXAX) Avxa(x)
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Formulation of the Q-rule

The Q,Q-rules:

LA gEe|Q AX) ...A;...q€]|Q]
(Q-vxa) VXA (Q-yxa) 0 X!

@ Since BI{ is w-arithmetic, the set of g =< d, X > is
well-defined.

@ By quantification over the set |Q| of ¢, the Q, Q-rules are
defined.

@ The definitions proceed by inductive definition.
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Interpretation of I1{-CA

@ rk(C) : the usual logical complexity of a formula C except that
rk(VXA(X)) = rk(3XA(X)) = 0.

@ dg(d) : the cut-rank of d defined using rk(C) where Cis a
cut-formula in it.

@ We write I, T if there is a derivation d such that its end-sequent
is T and dg(d) <m.

@ We define a one-step reduction operator Zc in BI® as before.

Theorem (One-Step Reduction)

There is an operator %¢ such that
Ifdyt, T,C, dy -, T, —~C and rk(C) < m, then Zc(dy,d;) -, T.

Proof. By double induction on dy and d,. Zc replaces impredicative
cut by “hidden” impredicative cut Q and eliminates other cuts in the
standard way.
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Interpretation of I1{-CA

Assume dy = /\VXA (d()()) FnT,VXA, d| = Q( . -dlq .. ) Fn T, 2VXA. Then
doo Fm T, A(X), VXA and dy, - T, A, —VXA.

Using IH twice, we get Zc(doo,d1) Fn T, A(X) and Zc(do,d1g) Fm T, A

Hence we have the required derivation via Q:
Q(Zc(doo,dr), .. Zeldo,dry) - ..) Fr T.00

Theorem (Substitution)

There is an operator .73 such that if BIf > d - T, then
BI > 7X(d) o TIX/T).

Proof. By induction on d. Notice that the operator preserves all
inference rules in d. The last inference rule of d cannot be Cur,Q,Q. O

Remark: .7} is a key of the Q-rule. In the iterated case, some care is
needed.
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Interpretation of I1{-CA

@ Consider an application of IT}-CA in BI:

T, -A(T), -VXA(X)
T, —~VXA(X)

@ This derivation is embedded into BI® in the following way:

AAX) ;
AA(T) © T T,-A(T), VXA
.. A,-VXA...

[, -VXA

c@A<T>
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Interpretation of Impredicative Cut

@ How about the following impredicative cut ?

T, ﬁA(T),:HXﬁA(X)

T
I,3X-A(X) Vax-am
Cut

F,A(X),:VXA(X)
I, VXA(X)

Avxa(x)

r
@ II}-CA /%y, x is interpreted by Q.
@ Cut is interpreted by Z.

@ Thus the whole derivation is interpreted by Q.
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Interpretation of Impredicative Cut

A,A:(X)

X :

: : AAT) © T T,-A(T),3X-A(X) 2
[LA(X),VXA(X) T,3X-A(X) 2 I, VXA(X) LA 3X-AX) -
[LA(X) - LA, 7

T Q

@ The notation ...I",A... means that we have a proof I', A for any
given cut-free proof of A,A(X).
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Interpretation of Impredicative Cut

A,A:(X)

X :

: : AAT) © T T,-A(T),3X-A(X) 2
[LA(X),VXA(X) T,3X-A(X) 2 I, VXA(X) LA 3X-AX) -
[LA(X) - LA, 7

T Q

@ The notation ...I",A... means that we have a proof I', A for any
given cut-free proof of A,A(X).

@ Informal picture of collapsing (impredicative c.e.) : taking a
subtree on the right hand side.

@ Moreover: Takeuti’s reduction = Buchholz’s collapsing.
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Predicative Cut-Elimination and Collapsing Theorem

@ The operation & reducing cut-rank by 1 is defined as before:

Theorem (Cut-Reduction)
Ifdrpu T, then &(d) by, T

Proof. é"(CutC(do,dl)) = %C(g(do),éo(dl))_ m]

@ Moreover we define the operator  eliminating hidden cut Q as
Buchholz did. Recall that BI{ is cut-free w-arithmetic.

Theorem (Collapsing)
If BI* > d T andT is arithmetical, then BI} > 2(d) - T.

Proof. Since I is arithmetical, the last rule of d cannot be
Q, Avxa- Moreover, it cannot be Cur. Hence the principal case is
that the last rule of d = Q. In other cases we apply IH.
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Predicative Cut-Elimination and Collapsing Theorem

Letd = Q(dy,...d,...) such that dy - T',A(X) and d, + T, A. Since
[',A(X) is arithmetical, we have BI§ > 2(dy) - T',A(X).

Now taking I" as A in d,, then dy4,) - T'. Since dg 4, is a sub
derivation of d, so we apply IH again: BI > PD(dyay) FT. O

{q:A,:A(X)}

&) DAy
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A Simple Explanation of the Collapsing Theorem

Letd = Q(do,...d,...) such that dy - [,A(X) and d, + T, A.
Assume that there is the only one Q in d.

The key idea: dy can be regarded as an “input” ¢ by taking I as A,.

Then there is subderivation d,, of d, which is completely cut-free
(without Q). Moreover, dg, T since I', Ay, =T.

The collapsing step is taking a subderivation of a given derivation. If
needed, this process is iterated.
{q : AJA(X)}

_ TAKX) ..TA..
Q) 5 X!
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Embedding Function from BI to BI

@ The embedding function () from BI to BI is a function such
that :

Q@ Il-CA=0
@ impredicative cut = Q

Theorem (Embedding of BI into BI?)
IfBI>d =T, then BI® > d= -T.

Recall that BI{ is cut-free w-arithmetic. Combining these theorems
obtained so far, we have the following:

Theorem
IfBI > d =T, then BI$ > 2(&™(d”)) o T whereT is arithmetical.
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Part Ill: An Extension of the Q-Rule.
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Main Difficulty for Extending the Q-Rule

@ Complete cut-elimination: c.e. for arbitrary sequents.

@ Why the collapsing is partial cut-elimination for arithmetical
formulas?

= The domain of the Q-rule contains only arithmetical proofs.

@ The main difficulty to extend the Q-rule is to define |Q|
(impredicativity of the Q-rule).

@ But: if d € |Q| ranges over (not only arithmetical) all proofs, we
are led to circular.

@ Reason: we cannot quantifier over a domain of the Q-rule if it
may contain the Q-rule.
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Main Difficulty for Extending the Q-Rule

@ The Q-rule:

@ Take any ¢ € |Q| such that g A(x),A.
© If we have a proof f(q) - T',=VXA,A, then
Q(...f(g)...) F T,~VXA.

@ The key: quantification over ||, the source of impredicativity of
the Q-rule (inductive definition).

@ If g € |Q] might contain the Q-rule, then we have assumed what
we want to define, hence vicious circle.

@ Our idea (joint with G.Mints): to extend the Q-rule using Takeuti’s
notion of explicit/implicit inference.
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Main idea

Main idea is to define the Q-rule based on explicit/implicit distinction.

Definition (Takeuti)

A logical inference with the principal formula A is implicit if there is a
cut whose cut-formula is traced to A. Otherwise it's called explicit.

@ Example: any logical inference of a derivation of empty sequent
is implicit (cf. Gentzen’s consistency proof of PA).

@ Observation: explicit/implicit distinction is preserved in the
process of cut-elimination.
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Main Idea

@ The domain of the Q" -rule contains not only logical inferences
for arithmetical formulas, but \/_yyp.

@ Implicit IT{-CA: translated into the Q-rule as Buchholz did.
@ Explicit IT}-CA: preserved, hence included into |Q*].

Example:

TLA(Y),-B(S) :
Il (Vo) :
[,A(Y),~VXB LoAT) o
[,VXA,~VXB [,-VXA (@)
T.—-VXB Cut(Q)
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Formulation of Q*-Rule

Language of second-order arithmetic sorted by e, i.

Example: X (1)), X (1)¢,VxA¢, VxA! VXA¢, VXA, IXA! IXA°.

I, A¢ denotes sets of explicit formulas: I'*, A¢ contains only formulas
like A°.

Sequent : I'*,IT'.

Definition
BIf)2+ : two sorted version of BIf)2+ with \/_yxae. Let 7,1 € {e,i}.

Axiom: restricted to atomic C:

W AXCr7_‘Ct
A(Y)F —A(T)°
r! VXAT Avxar “UXAC Vo wxae
AT

W /\V}cAr
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Formulation of Q*-Rule

Definition

BI®": BIZ" with Q*,QF, Cur.

Q| = the set of g =< d,X > with BI} " > d - A(X)",A¢ where all
formulas B € A? are arithmetical.

ceBg g €I A A g e Q]
VXAl -vxa Y! 0 VXA
ct (C
0

Remark: BIf)2+ contains \/_yx4.. Hence, Ay may contain 3XA¢ while A,
is just arithmetical in Buchholz’s original definition.
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One Step Reduction Z

Theorem (One-Step Reduction)

There is an operator % on derivations in B'IQ+ such that
if do b T¢,T1,C', dy b, T, TIT, =C" and rk(C') < m, then
Rc(do,dy) b T6,IT.

Proof.
” d() = /\vx3(x)i(d00) and d] = Q+(d1q)qe‘g+|, then

Ze(do,dv) = Q" (Rc(do,dy), Zc(do,d1g)) gejor |- O
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Predicative Cut-Elimination Operator &

By applying %, predicative cuts are eliminated:

Theorem (Cut-Reduction)

There is an operator & on derivations in BI®" such that
ifd iy T¢I, then &(d) b, T¢,TT.

Proof. Familiar iteration of Z¢. 0

Let &™ be m-times application of &.

Theorem (Predicative C.E.)
ifd 1 T¢I, then &™(d) o T, TT.

Remark: d b, I'*, IT" may contain some impredicative cuts Q.
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Collapsing Operator 2

@ A sequentI'is called almost explicit if all i-marked formulas
Al ¢ T are arithmetical.

@ Now we define a collapsing operator 2 for (not only arithmetical
but) arbitrary almost explicit sequent.

Theorem (Collapsing)

There is an operator 2 such that
ifBI%" 5 d T whereT is almost explicit, then BIf)2+ 3> 9(d)FoT.

Proof. last(d) := the last inference symbol of 4.
If last(d) = ZVXA(" set .@(d) = zVXAf(@(dO))-

Remark: \/7\ x4 is included in BI$ unlike Buchholz’s treatment.
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Collapsing Operator 2

Another important case: last(d) = Q* (di)ic oyuja*-

Consider the leftmost premise: dy -0 I'*,IT, A(Y)'. By IH, we get
BIS' 5 P(do) FT¥,IT, A(Y)\. Now Z(dp) is regarded as “input” for Q.
Formally, define ¢ := (2(dy),Y), then go € | Q7|

For the input Z(dy), there should be an immediate subderivation d,,
of QF s. t. dy, ko I, IT'.
Finally, apply IH to this d,:

2(d):=9(d,,) €BI .o

{q:A,A(Y)"} {go:T,IT,A(Y)’}
eI A(Y) ... T¢I, AC ... g€ |QF| = e 1m
Fe,Hl,A(Y)l VXA eIt 7
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Complete Cut-Elimination Theorem for BI®

@ By combining theorems obtained, we get the complete
cut-elimination theorem for BI®':

Theorem (Complete Cut-Elimination for BI®")

IFBI®" 5 d '+, T whereT is almost explicit, then BI®" 5 2(£™(d)) o T.

Proof. By Predicative Cut-Elimination and Collapsing Theorems. O
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Embedding of I1}-CA via the Q"-Rule

@ Following Buchholz, we embed I1}-CA to BI®'.

@ Difference from Buchholz: only implicit IT}-CA is translated into
the Q*-rule (explicit IT}-CA: preserved).

@ BI: parameter-free IT}-CA with Schitte’s o-rule.
@ Marking function m: assigning e or i to formulas A.

Theorem (Embedding)

Ifd € BI, then d*=(") Fag(a) T'(d)™ for any marking function m.

Proof.
If d = (V_yxa(do)) and m(—VXA) = -VXA¢, set

doo(m) = (\/—‘VXA‘? (d(o)o(m>))
Otherwise:
d™" = QT (Bar) (ST (dq)7d(o)o(m[A(T)/iD))qem+|~ o
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Complete Cut-Elimination Theorem for Bl

@ ¢ : the marking function assigning e to each formula A in L.

@ d* : the result of deleting all marks in sequents and inference
rules of d.

Theorem (Complete Cut-Elimination for BI)
Ifd € BI, then BI 5 (2(&"(d=(¥))))* ko T for some n.

Proof. By Embedding and C.C.E. for BI?" Theorems. Note that the
inference rules in BI$  become ones of BI after deleting marks. o

Remark: it is possible to iterate the Q*-rule (Akiyoshi, 2011).
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Some Problems

@ Precise game theoretic explanation of the Q-rule?
@ Extension of the Q-rule to stronger system?

@ Analogy with Girard’s extension of computability
predicate(candidates of reducibility)?
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