Weihrauch degrees of numerical problems -comparison with arithmetic-

Keita Yokoyama

joint work with Damir Dzhafarov and Reed Solomon

CTFM 2019
22 March, 2019

Contents

(1) Weihrauch degrees

- Weihrauch reduction
- Zoo of Weihrauch degrees

2 "First-order parts" of Weihrauch degrees

- Two veiwpoints
- Numerical/first-order problems
(3) Bounded problems and bounded parts
- Bounded problems from arithmetic
- Bounded parts of degrees

Contents

(1) Weihrauch degrees

- Weihrauch reduction
- Zoo of Weihrauch degrees

2. "First-order parts" of Weihrauch degrees

- Two veiwpoints
- Numerical/first-order problems
(3) Bounded problems and bounded parts
- Bounded problems from arithmetic
- Bounded parts of degrees

Weihrauch reducibility

For $f, g \in \omega^{\omega}$,

- Turing reducibility: $f \leq_{T} g \Leftrightarrow " f$ is computable from g ".

For $A, B \subseteq \omega^{\omega}$,

- Muchnik reducibility: $A \leq_{w} B \Leftrightarrow$
"any element $f \in B$ computes an element $f \geq_{T} g \in A$ ",
- Medvedev reducibility: $A \leq_{s} B \Leftrightarrow$ "there is a uniform method Φ to convert an element $f \in B$ into an element $\Phi^{f}=g \in A^{\prime \prime}$.

For $P, Q \subseteq \omega^{\omega} \times \omega^{\omega}$,

- Computable reducibility: $P \leq_{c} Q$,
- Weihrauch reducibility: $P \leq w$.

Weihrauch reducibility

Consider $P \subseteq \omega^{\omega} \times \omega^{\omega}$ as $P: \subseteq \omega^{\omega} \rightarrow \mathcal{P}\left(\omega^{\omega}\right) \backslash\{\emptyset\}$.

- Computable reducibility: $P \leq_{c} Q \Leftrightarrow$
$\forall f \in \operatorname{dom}(P) \exists g \leq_{T} f$ such that $g \in \operatorname{dom}(Q)$ and $P(f) \leq_{w}^{f} Q(g)$ (i.e., $\forall u \in Q(g) \exists v \leq_{T} u \oplus f$ such that $u \in P(f)$)
- Weihrauch reducibility: $P \leq_{w} Q \Leftrightarrow$ there are Turing functionals Φ, Ψ such that $\forall f \in \operatorname{dom}(P) \Phi^{f}=g \in \operatorname{dom}(Q)$ and $P(f) \leq_{s} Q(g)$ via Ψ^{f} (i.e., $\forall u \in Q(g) \psi^{u \oplus f}=v \in P(f)$)
P describes a problem of the form $\forall f \exists g(\varphi(f) \rightarrow \psi(f, g))$.
- \leq_{w} is often considered as a reduction on Π_{2}^{1}-problems (but not really).
- $f \in \operatorname{dom}(P)$: instance/input of a problem P.
- $g \in P(f): P$-solution/output for g.

Weihrauch lattice

Degrees induced by Weihrauch reducibility form a lattice.

- $\sup (P, Q)=P \sqcup Q$

$$
=\{((0, f), g):(f, g) \in P\} \cup\{((1, f), g):(f, g) \in Q\}
$$

- $\inf (P, Q)=P \sqcap Q$

$$
\begin{aligned}
= & \{((f, g),(0, h)):(f, g) \in \operatorname{dom}(P) \times \operatorname{dom}(Q),(f, h) \in P\} \\
& \cup\{((f, g),(1, h)):(f, g) \in \operatorname{dom}(P) \times \operatorname{dom}(Q),(g, h) \in Q\}
\end{aligned}
$$

- 0: a problem with empty domain (i.e., $\mathbf{0}=\emptyset$): easiest problem
* One may add ∞ as the hardest problem: $\operatorname{dom}(\infty)=\omega^{\omega}, \infty(f)=\emptyset$

Here, we mainly focus on problems harder than "self-solvable".

- $1:=\mathrm{id}=\left\{(f, f): f \in \omega^{\omega}\right\}$: self-solvable (trivial) problem

Product is a basic operator on the Weihrauch lattice.

- $P \times Q=\{((f, g),(u, v)):(f, u) \in P,(g, v) \in Q\}$ ($P \times Q \geq_{w} \sup (P, Q)$ if $P, Q \geq_{w}$ id.)
X : Polish space with computable representation
- C_{X} (closed choice on \mathcal{X})
instance: (a negative code for) a closed set $A \subseteq \mathcal{X}$
solution: a point in A
- K_{X} (compact choice on \mathcal{X})
instance: (a code by 2^{-n}-nets for) a compact set $A \subseteq \mathcal{X}$
solution: a point in A
- $\lim _{X}$ (limit operator)
instance: a convergent sequence $\left\langle x_{i}\right\rangle_{i \in \omega}$
solution: $x=\lim x_{i}$
- $\mathrm{BWT}_{\mathcal{X}}$ (Bolzano-Weierstraß theorem)
instance: totally bounded sequence $\left\langle x_{i}\right\rangle_{i \in \omega}$
solution: convergent subsequence of $\left\langle x_{i}\right\rangle_{i \epsilon \omega}$
- IVT (intermediate value theorem)
instance: continuous function $f:[0,1] \rightarrow \mathbb{R}$ such that $f(0) f(1) \leq 0$
solution: $x \in[0,1]$ such that $f(x)=0$
- WKL (weak König's lemma)
instance: infinite tree $T \subseteq 2^{<\omega}$
solution: a path of T
- WWKL (weak weak König's lemma)
instance: infinite tree $T \subseteq 2^{<\omega}$ with positive measure
solution: a path of T
- MLR (Martin-Löf random)
instance: $x \in \mathbb{R}$
solution: Martin-Löf random real relative to x
- RT_{k}^{n} (Ramsey's theorem)
instance: function $f:[\mathbb{N}]^{n} \rightarrow k$
solution: an infinite homogeneous set for f
- $\mathrm{RT}_{<\infty}^{n}$ (Ramsey's theorem)
instance: $k \in \omega$ and function $f:[\mathbb{N}]^{n} \rightarrow k$
solution: an infinite homogeneous set for f

Zoo of Weihrauch degrees

- There are so many results on the study of the structure of Weihrauch degrees.

Brattka, Pauly, Marcone, Dzhafarov,...
Zoo from V. Brattka's Tutorial slides.
See http://cca-net.de/publications/weibib.php.
Too complicated???
\Rightarrow want some reasonable measure for Weihrauch degrees.

Contents

(1)

Weihrauch degrees

- Weihrauch reduction
- Zoo of Weihrauch degrees

2 "First-order parts" of Weihrauch degrees

- Two veiwpoints
- Numerical/first-order problems
(3) Bounded problems and bounded parts
- Bounded problems from arithmetic
- Bounded parts of degrees

Two viewpoints for axioms of second-order arithmetic

A, B axioms of second-order arithmetic (including RCA_{0}).

Degree-theoretic strength:

- Consider the complexity of $S \subseteq \mathcal{P}(\omega)$ such that $(\omega, S) \models A$.
- Strength can be described as the complexity of Turing ideals.
- Observation (though not exactly accurate) " $(\omega, S) \models A \Rightarrow(\omega, S) \models B$ for any S means A plus strong enough induction implies B."

First-order strength/proof-theoretic strength

- Consider the class of first-order $/ \Pi_{1}^{1}$-consequences of A.
- It can be compared with the hierarchy of induction/bounding principles.

Two viewpoints for Weihrauch degrees?

Degree-theoretic strength:

- Computable reduction \leq_{c} well reflects Turing-degree-theoretic strength.
- Turing-degree-theoretic part of P :

$$
{ }^{T d}(P):=\left\{(f, g) \in \omega^{\omega}: f=f_{0}, g \geq_{T} g_{0} \text { for some }\left(f_{0}, g_{0}\right) \in P\right\} .
$$

Then, ${ }^{T d}(P) \leq_{w} P$ and $Q \leq_{c} P \Rightarrow Q \leq_{c}{ }^{T d}(P)$.

First-order strength?

- Is there a good measure corresponding to the first-order parts in arithmetic?

Numerical/first-order problems

(Identify $n \in \omega$ with the constant function $\lambda x . n \in \omega^{\omega}$.)

- A problem P is said to be numerical/first-order if $P(f) \subseteq \omega$ for any $f \in \operatorname{dom}(P)$.
* Note that any solution of P doesn't have any computational power since it is just a constant function.
- There are many non-trivial first-order problems, e.g., $\mathrm{C}_{2}, \mathrm{C}_{\mathbb{N}}, \lim _{\mathbb{N}}, \ldots$

Theorem (Numerical/first-order part)

For a given problem P, the numerical/first-order part of P

$$
{ }^{1}(P):=\max \left\{Q \leq_{w} P: Q \text { is first-order }\right\}
$$

always exists.

- Then, ${ }^{1}(P) \leq_{W} P$, and,
$Q \leq{ }_{w} P \Rightarrow Q \leq w^{1}(P)$ for any numerical Q.

Numerical/first-order parts

The first-order part just describes "non-uniformity" of a problem.

Theorem

A problem P is computably trivial (i.e., $P \leq_{c}$ id) if and only if $P \leq w$ for some first-order problem Q.

Indeed, it is orthogonal to the degree theoretic part.

Theorem

Let $P \geq_{w}$ id.
(1) ${ }^{T d}\left({ }^{T d}(P)\right)={ }^{T d}(P)$ and ${ }^{1}\left({ }^{1}(P)\right)={ }^{1}(P)$.
(2) ${ }^{T d}\left({ }^{1}(P)\right) \equiv w^{1}\left({ }^{T d}(P)\right) \equiv w$ id.

Numerical/first-order parts

Note that ${ }^{T d}(P)$ and ${ }^{1}(P)$ do not capture the exact power of P.

- Let $P=\inf \left(\mathrm{WKL}, \mathrm{C}_{\mathbb{N}}\right)$. Then, ${ }^{\text {Td }}(P) \equiv w^{1}(P) \equiv w$ id, but $P>_{w}$ id.
* Similar problem happens in arithmetic, e.g., WKL $\vee \mathrm{I} \Sigma_{2}^{0}$ implies neither the existence of non-recursive set nor non-trivial induction over RCA_{0}.
The notion of non-diagonalizability introduced by Hirschfeld and Jockusch provides a nice condition to be first-order trivial.

Theorem (nondiagonalizable vs first-order trivial)

If a problem P is non-diagonalizable, i.e., there is a Turing functional ψ such that

$$
\Psi^{f}(\sigma)=0 \Leftrightarrow \exists g \supseteq \sigma(g \in P(f)) \text { for any } f \in \operatorname{dom}(P)
$$

then, ${ }^{1}(P)$ is trivial.

Classification by first-order strength

 Here, $P^{\prime}=P \circ \lim _{\mathbb{N}^{N}}$ (the jump of P).- id $\equiv w^{1}$ (MLR)
(MLR $>_{w}$ id)
- $\mathrm{K}_{\mathbb{N}} \equiv w^{1}\left(\mathrm{~K}_{\mathbb{R}^{n}}\right) \equiv w^{1}(\mathrm{WKL}) \equiv w^{1}(\mathrm{WWKL}) \equiv w^{1}(\mathrm{IVT})$

$$
\left(\mathrm{K}_{\mathbb{R}^{n}} \geq_{w} \mathrm{WKL}>_{w} \mathrm{IVT}>_{w} \mathrm{~K}_{\mathbb{N}}\right)
$$

- $\mathrm{C}_{\mathbb{N}} \equiv{ }^{1}\left(\lim _{\mathbb{N}^{\mathbb{N}}}\right) \equiv w^{1}\left(\mathrm{C}_{\mathbb{R}^{n}}\right) \equiv w^{1}\left(\mathrm{BWT}_{\mathbb{R}^{n}}\right) \equiv w^{1}\left(\lim _{\mathbb{N}}\right)$
$\left(\lim _{\mathbb{N}^{\mathbb{N}}} \geq{ }_{W} \mathrm{C}_{\mathbb{R}^{n}} \geq_{w} B W T_{\mathbb{R}^{n}} \geq w \lim _{\mathbb{N}}\right)$
- $\left(\mathrm{K}_{\mathbb{N}}\right)^{\prime} \equiv{ }_{w} \mathrm{RT}_{<\infty}^{1} \equiv w^{1}\left((\mathrm{WKL})^{\prime}\right)$
- $\left(\mathrm{C}_{2}\right)^{(n)} \leq w^{1}\left(\mathrm{RT}_{2}^{n}\right) \leq w\left(\mathrm{~K}_{\mathbb{N}}\right)^{(n)}$

Question

Brattka's observation:

$$
\mathrm{K}_{\mathbb{N}}<w \mathrm{C}_{\mathbb{N}}<w \mathrm{~K}_{\mathbb{N}}^{\prime}<w \mathrm{C}_{\mathbb{N}}^{\prime}<w \mathrm{~K}_{\mathbb{N}}^{\prime \prime}<w \mathrm{C}_{\mathbb{N}}^{\prime \prime}<w \cdots
$$

does this hierarchy correspond to the Kirby-Paris hierarchy of induction and bounding in arithmetic?

Contents

Weihrauch degrees

- Weihrauch reduction
- Zoo of Weihrauch degrees

(2)
"First-order parts" of Weihrauch degrees

- Two veiwpoints
- Numerical/first-order problems
(3) Bounded problems and bounded parts
- Bounded problems from arithmetic
- Bounded parts of degrees

Problems from arithmetic I

We introduce problems corresponding to

- bounded comprehension (2nd-order form of induction),
- bounded separation (2nd-order form of bounding).

Let $\Gamma=\Sigma_{n}^{0}$ or Π_{n}^{0}.
(1) 「-truth

- instance: $\langle A, \varphi\rangle$ where $A \subseteq \omega$ and $\varphi(X) \in \Gamma^{X}$,
- solution: $i \in\{0,1\}$ answering whether $\omega \models \varphi(A)$ or not.
(2) 「-choice
- instance: $\left\langle A, \varphi_{0}, \varphi_{1}\right\rangle$ where $A \subseteq \omega$ and $\varphi_{i}(X) \in \Gamma^{X}$ such that $\omega \models \varphi_{0}(A) \vee \varphi_{1}(A)$,
- solution: $i \in\{0,1\}$ such that $\omega \models \varphi_{i}(A)$.

Problems from arithmetic II

For $n \geq 1$, we may easily see that
Σ_{n}^{0}-choice $\leq w \Pi_{n}^{0}$-choice $\leq_{w} \Sigma_{n}^{0}$-truth $\leq_{w} \Sigma_{n+1}^{0}$-choice.
We see later that this is strict in a strong sense.

Proposition

(1) Σ_{0}^{0}-truth $\equiv w \Sigma_{1}^{0}$-choice $\equiv w$ id.
(2) For $n \geq 1, \Pi_{n}^{0}$-choice $\equiv w \mathrm{C}_{2}^{(n-1)} \equiv w \operatorname{LLPO}^{(n-1)}$.
(3) For $n \geq 1, \Sigma_{n}^{0}$-truth $\equiv w \mathrm{LPO}^{(n-1)}$.
(4) For $n \geq 2, \Sigma_{n}^{0}$-choice $\equiv w \Delta_{n}^{0}$-truth $\equiv w \lim _{2}^{(n-2)}$.

Hierarchy of problems from arithmetic

- Given a problem P, P^{*} is defined as follows:
- instance: $k \in \omega$ and $\left\langle f_{i} \in \operatorname{dom}(P): i<k\right\rangle$,
- solution: $\left\langle g_{i}: i<k\right\rangle$ such that $g_{i} \in P\left(f_{i}\right)$.

Theorem (arithmetical hierarchy of bounded principles)

For $n \geq 1$ we have the following.
(1) $\left(\Sigma_{n}^{0}\right.$-choice) ${ }^{*} \nsupseteq w \Pi_{n}^{0}$-choice.
(2) $\left(\Pi_{n}^{0} \text {-choice) }\right)^{*} \nsupseteq w \Sigma_{n}^{0}$-truth.
(3) $\left(\Sigma_{n}^{0} \text {-truth }\right)^{*} \nsupseteq w \Sigma_{n+1}^{0}$-choice.

Thus, we have the following hierarchy for $n \geq 1$:
$\left(\Sigma_{n}^{0} \text {-choice }\right)^{*}<w\left(\Pi_{n}^{0} \text {-choice }\right)^{*}<w\left(\Sigma_{n}^{0} \text {-truth }\right)^{*}<w\left(\Sigma_{n+1}^{0} \text {-choice }\right)^{*}$.

Bounded comprehension, bounded separation, least number principle

(1) 「-bC (bounded choice)

- instance: $\langle A, \varphi, k\rangle$ where $A \subseteq \omega, \varphi(X, x) \in \Gamma^{X}$ and $k \in \omega$ such that $\omega \models \exists x<k \varphi(A, x)$,
- solution: $i \in\{0, \ldots, k-1\}$ such that $\omega \models \varphi(A, i)$.
(2) 「-bLC (bounded least choice)
- instance: $\langle A, \varphi, k\rangle$ where $A \subseteq \omega, \varphi(X, x) \in \Gamma^{X}$ and $k \in \omega$ such that $\omega \models \exists x<k \varphi(A, x)$,
- solution: least $i \in\{0, \ldots, k-1\}$ such that $\omega \models \varphi(A, i)$.

Proposition

Let $n \geq 1$.
(1) $\left(\Sigma_{n}^{0} \text {-choice) }\right)^{*} \equiv w \Sigma_{n}^{0}$-bC $\equiv w \Delta_{n}^{0}$-bLC.
(corresponds to bound- $\Delta_{n}^{0}-\mathrm{CA}, \mathrm{L} \Delta_{n}^{0}$) $\approx \mathrm{I} \Delta_{n}^{0}$
(2) $\left(\Pi_{n}^{0} \text {-choice }\right)^{*} \equiv w \Pi_{n}^{0}$-bC.
(corresponds to bound- Σ_{n}^{0}-SEP) $\approx \mathrm{B} \Sigma_{n}^{0}$
(3) (Σ_{n}^{0}-truth) ${ }^{*} \equiv w \Sigma_{n}^{0}$-bLC $\equiv w \Pi_{n}^{0}$-bLC.
(corresponds to bound- $\Sigma_{n}^{0}-\mathrm{CA}, \mathrm{L} \Sigma_{n}^{0}$) $\approx \mathrm{I} \Sigma_{n}^{0}$

Bounded problems

- A first-order problem P is said to be bounded if there is a Turing functional τ such that for any $X \in \operatorname{dom}(\mathrm{P})$ of $\mathrm{P}, \tau^{X}(0) \downarrow$ and $\mathrm{P}(X) \subseteq\left[0, \tau^{X}(0)\right]$.
- A first-order problem P is said to be k-bounded if $\mathrm{P}(X) \subseteq[0, k]$ for any $X \in \operatorname{dom}(\mathrm{P})$.

Theorem

(1) If a problem P is k -bounded, then $\mathrm{C}_{\mathrm{k}+1}$ is not Weihrauch reducible to P .
(2) If a problem P is bounded, then $\mathrm{C}_{\mathbb{N}}$ is not Weihrauch reducible to P .

Bounded part

One can consider the bounded part of a degree as well.

Theorem (Bounded part)

For a given problem P, the bounded part of P

$$
{ }^{b 1}(P):=\max \left\{Q \leq{ }_{w} P: Q \text { is bounded }\right\}
$$

always exists.
Here are some examples.

Theorem

- For $n \geq 1,{ }^{b 1}\left(\lim _{\mathbb{N}^{N}}^{(n-1)}\right) \equiv w^{b 1}\left(\mathrm{C}_{\mathbb{N}}^{(n-1)}\right) \equiv{ }_{W}\left(\Sigma_{n+1}^{0} \text {-choice }\right)^{*}$.
- For $n \geq 0,{ }^{b 1}\left(\mathrm{WKL}^{(n)}\right) \equiv w^{b 1}\left(\mathrm{~K}_{\mathbb{N}}^{(n)}\right) \equiv w\left(\Pi_{n+1}^{0} \text {-choice }\right)^{*}$.

Note that

$$
W K L<w \lim _{\mathbb{N}^{\mathbb{N}}}<w W K L^{\prime}<w \lim _{\mathbb{N}^{\mathbb{N}}}^{\prime}<w W^{\prime \prime}<w \ldots
$$

Question

Brattka's observation:

$$
\mathrm{K}_{\mathbb{N}}<w \mathrm{C}_{\mathbb{N}}<w \mathrm{~K}_{\mathbb{N}}^{\prime}<w \mathrm{C}_{\mathbb{N}}^{\prime}<w \mathrm{~K}_{\mathbb{N}}^{\prime \prime}<w \mathrm{C}_{\mathbb{N}}^{\prime \prime}<w \cdots
$$

Does this hierarchy correspond to the following Kirby-Paris hierarchy?

$$
\mathrm{B} \Sigma_{1}<\mathrm{I} \Sigma_{1}<\mathrm{B} \Sigma_{2}<\mathrm{I} \Sigma_{2}<\mathrm{B} \Sigma_{3}<\cdots
$$

It seems this hierarchy reasonably fits with the hierarchy in arithmetic.

$$
\begin{aligned}
& \text { - }{ }^{b 1}\left(\mathrm{~K}_{\mathbb{N}}^{(n)}\right) \equiv w\left(\Pi_{n+1}^{0} \text {-choice }\right)^{*} \\
& -{ }^{b 1}\left(\mathrm{C}_{\mathbb{N}}^{(n)}\right) \equiv w\left(\Sigma_{n+2}^{0} \text {-choice }\right)^{*} .
\end{aligned}
$$

However, they both closer to $\mathrm{B} \Sigma_{n}^{0} \ldots$, indeed it fits better with

$$
\mathrm{B} \Sigma_{1}<\mathrm{I} \Delta_{2} \leq \mathrm{B} \Sigma_{2}<\mathrm{I} \Delta_{3} \leq \mathrm{B} \Sigma_{3}<\cdots
$$

Classification by bounded parts

Here are more examples:

- $\left(\Sigma_{1}^{0} \text {-choice }\right)^{*} \equiv w_{\text {id }} \equiv w^{b 1}$ (MLR)
- $\left(\Pi_{1}^{0} \text {-choice }\right)^{*} \equiv{ }_{w}\left(\mathrm{C}_{2}\right)^{*} \equiv w^{b 1}\left(\mathrm{~K}_{\mathbb{R}^{n}}\right) \equiv W^{b 1}(\mathrm{WKL}) \equiv w^{b 1}(\mathrm{IVT})$
- $\left(\Sigma_{2}^{0} \text {-choice }\right)^{*} \equiv{ }_{W}\left(\lim _{2}\right)^{*} \equiv W^{b 1}\left(\lim _{\mathbb{N}^{\mathbb{N}}}\right) \equiv{ }_{W}{ }^{b 1}\left(\mathrm{C}_{\mathbb{R}^{n}}\right)$ $\equiv w^{b 1}\left(\mathrm{BWT}_{\mathbb{R}^{n}}\right) \equiv w^{b 1}\left(\lim _{\mathbb{N}}\right)$
- $\left(\Pi_{n+1}^{0} \text {-choice }\right)^{*} \equiv w^{b 1}\left(\mathrm{RT}_{<\infty}^{n}\right)$
" $\mathrm{RT}_{<\infty}^{n}$ is conservative over $\left(\Pi_{n+1}^{0} \text {-choice }\right)^{*}$ for bounded principles."

Better understanding of Weihrauch separation

One may understand some separations in a better way:
Ex. 1: MLR $<w$ WWKL $<w$ WKL

$$
\begin{aligned}
& T d \\
& (\mathrm{MLR}) \equiv{ }^{T d}(\mathrm{WWKL}), \text { but }^{b 1}(\mathrm{MLR})<{ }^{b 1}(\mathrm{WWKL}), \\
& { }^{b 1}(\mathrm{WWKL}) \equiv{ }^{b 1}(\mathrm{WKL}), \text { but }{ }^{T d}(\mathrm{WWKL})<{ }^{T d}(\mathrm{WKL}) .
\end{aligned}
$$

Ex. 2: IVT $<w$ WKL $<w \mathrm{C}_{\mathbb{R}}$

$$
\begin{aligned}
& b 1(\mathrm{IVT}) \equiv{ }^{b 1}(\mathrm{WKL}), \text { but }^{T d}(\mathrm{IVT})<{ }^{T d}(\mathrm{WKL}) \\
& \\
& { }^{T d}(\mathrm{WKL}) \equiv{ }^{T d}\left(\mathrm{C}_{\mathbb{R}}\right), \text { but }{ }^{b 1}(\mathrm{WKL})<{ }^{b 1}\left(\mathrm{C}_{\mathbb{R}}\right)
\end{aligned}
$$

Classification by computability strength

id	\equiv_{c}	$\mathrm{IVT}, \mathrm{C}_{\mathbb{N}}, \mathrm{RT}^{1}$
\wedge_{c}		
WWKL	\equiv_{c}	MLR
\wedge_{c}		
WKL	\equiv_{c}	$\mathrm{C}_{\mathbb{R}}, \mathrm{C}_{2^{\mathbb{N}}}, \mathrm{BWT}_{\mathbb{R}^{n}}$
\wedge_{c}		
\lim	\equiv_{c}	$\lim _{\mathbb{R}}$
\wedge_{c}		
WKL^{\prime}	\geq_{c}	RT^{2}
\wedge_{c}		
$\lim ^{\prime}$		
\wedge_{c}		
\vdots		
\wedge_{c}		
$\Delta_{1}^{1} \mathrm{CA}$	\equiv_{c}	ATR_{1}
\wedge_{c}		$\Sigma_{1}^{1} \mathrm{C}_{\mathbb{N}^{\mathbb{N}}}$

Classification by bounded strength

（inc．recent results with Patey and Angles D＇Auriac）

id	三 W，b1	MLR，DNR，PA
$\wedge_{W, b 1}$		
$\mathrm{C}_{2}{ }^{*}$	$\equiv W, b 1$	LLPO＊，WKL，WWKL，IVT， $\mathrm{C}_{2}{ }^{\text {N }}$
$\wedge_{W, b 1}$		
LPO＊	三 W，b1	$\min _{\mathbb{N} \rightarrow \mathbb{N}}$
$\wedge_{W, b 1}$		
$\lim _{2}{ }^{*}$	三 W，b1	$\lim , B W T_{\mathbb{R}^{n}}, \lim _{\mathbb{N}}, \mathrm{C}_{\mathbb{R}}$
$\wedge_{W, b 1}$		
$\mathrm{C}_{2}^{\prime *}$	$\equiv W, b 1$	WKL＇， RT^{1}
$\wedge_{W, b 1}$		
$\lim _{2}^{\prime *}$	$\equiv W, b 1$	$\mathrm{lim} \star \mathrm{lim}$
$\wedge_{W, b 1}$		
$\mathrm{C}_{2}^{\prime \prime *}$	$\equiv W, b 1$	WKL＇${ }^{\prime}, \mathrm{RT}^{2}$
$\wedge_{W, b 1}$		
$\Delta_{1}^{1} \mathrm{C}_{2}{ }^{*}$	$\equiv W, b 1$	$\Delta_{1}^{1} \mathrm{CA}, \mathrm{ATR}_{1}$
$\wedge_{W, b 1}$		
$\Sigma_{1}^{1} \mathrm{C}_{2}{ }^{*}$	$\equiv W, b 1$	$\Sigma_{1}^{1} \mathrm{C}_{2^{\mathbb{N}}}, \mathrm{C}_{\mathbb{N}^{\mathbb{N}}}, \Sigma_{1}^{1} \mathrm{C}_{\mathbb{N}^{\mathbb{N}}}$

Some questions

Question

Is there a nice characterization of a problem whose first-order part is trivial, i.e., ${ }^{1}(P) \equiv w$ (id)?

If a problem P is non-diagonalizable, i.e., there is a Turing functional Ψ such that

$$
\Psi^{f}(\sigma)=0 \Leftrightarrow \exists g \supseteq \sigma(g \in P(f)) \text { for any } f \in \operatorname{dom}(P),
$$

then, ${ }^{1}(P)$ is trivial.
However,

- TS_{3}^{1} (thin set theorem for 3-colors) is not below any non-diagonalizable degree, but ${ }^{1}\left(\mathrm{TS}_{3}^{1}\right)$ is trivial.

Question

What is the first-order/bounded part of RT_{2}^{n} ?
Indeed, the strength of Ramsey's theorem in Weihrauch degrees is still complicated with this viewpoint.

Thank you!

This work is partially supported by JSPS Core-to-Core Program (A. Advanced Research Networks), JSPS KAKENHI (grant numbers 16K17640 and 15H03634), and JAIST Research Grant 2018(Houga).

