Weihrauch degrees of numerical problems —comparison with arithmetic—

Keita Yokoyama

joint work with Damir Dzhafarov and Reed Solomon

CTFM 2019 22 March, 2019

Contents

- Weihrauch reduction
- Zoo of Weihrauch degrees
- Particular (2) "First-order parts" of Weihrauch degrees
 - Two veiwpoints
 - Numerical/first-order problems
- Bounded problems and bounded parts
 - Bounded problems from arithmetic
 - Bounded parts of degrees

"First-order parts" of Weihrauch degrees Bounded problems and bounded parts

Contents

Weihrauch reduction Zoo of Weihrauch degrees

Weihrauch degrees

- Weihrauch reduction
- Zoo of Weihrauch degrees
- 2 "First-order parts" of Weihrauch degrees
 - Two veiwpoints
 - Numerical/first-order problems
- 3 Bounded problems and bounded parts
 - Bounded problems from arithmetic
 - Bounded parts of degrees

"First-order parts" of Weihrauch degrees Bounded problems and bounded parts Weihrauch reduction Zoo of Weihrauch degrees

Weihrauch reducibility

For $f, g \in \omega^{\omega}$,

• Turing reducibility: $f \leq_T g \Leftrightarrow "f$ is computable from g".

For $A, B \subseteq \omega^{\omega}$,

- Muchnik reducibility: A ≤_w B ⇔
 "any element f ∈ B computes an element f ≥_T g ∈ A",
- Medvedev reducibility: A ≤_s B ⇔
 "there is a uniform method Φ to convert an element f ∈ B into an element Φ^f = g ∈ A".

For $P, Q \subseteq \omega^{\omega} \times \omega^{\omega}$,

- Computable reducibility: $P \leq_c Q$,
- Weihrauch reducibility: $P \leq_W Q$.

"First-order parts" of Weihrauch degrees Bounded problems and bounded parts Weihrauch reduction Zoo of Weihrauch degrees

Weihrauch reducibility

Consider $P \subseteq \omega^{\omega} \times \omega^{\omega}$ as $P : \subseteq \omega^{\omega} \to \mathcal{P}(\omega^{\omega}) \setminus \{\emptyset\}.$

• Computable reducibility: $P \leq_c Q \Leftrightarrow$

 $\forall f \in \operatorname{dom}(P) \exists g \leq_T f \text{ such that } g \in \operatorname{dom}(Q) \text{ and } P(f) \leq_W^f Q(g) \\ \text{ (i.e., } \forall u \in Q(g) \exists v \leq_T u \oplus f \text{ such that } u \in P(f))$

• Weihrauch reducibility: $P \leq_W Q \Leftrightarrow$

there are Turing functionals Φ , Ψ such that $\forall f \in \text{dom}(P) \ \Phi^f = g \in \text{dom}(Q) \text{ and } P(f) \leq_s Q(g) \text{ via } \Psi^f$ (i.e., $\forall u \in Q(g) \ \Psi^{u \oplus f} = v \in P(f)$)

P describes a problem of the form $\forall f \exists g(\varphi(f) \rightarrow \psi(f, g))$.

- ≤_W is often considered as a reduction on Π¹₂-problems (but not really).
- $f \in \text{dom}(P)$: instance/input of a problem *P*.
- $g \in P(f)$: *P*-solution/output for *g*.

"First-order parts" of Weihrauch degrees Bounded problems and bounded parts Weihrauch reduction Zoo of Weihrauch degrees

Weihrauch lattice

Degrees induced by Weihrauch reducibility form a lattice.

- $\sup(P,Q) = P \sqcup Q$ = {((0, f), g) : (f, g) $\in P$ } \cup {((1, f), g) : (f, g) $\in Q$ }
- $\inf(P, Q) = P \sqcap Q$ = {((f,g), (0,h)) : (f,g) $\in \operatorname{dom}(P) \times \operatorname{dom}(Q), (f,h) \in P$ } \cup {((f,g), (1,h)) : (f,g) $\in \operatorname{dom}(P) \times \operatorname{dom}(Q), (g,h) \in Q$ }
- **0**: a problem with empty domain (i.e., $\mathbf{0} = \emptyset$): easiest problem
- * One may add ∞ as the hardest problem: $\operatorname{dom}(\infty) = \omega^{\omega}, \infty(f) = \emptyset$

Here, we mainly focus on problems harder than "self-solvable".

• $\mathbf{1} := id = \{(f, f) : f \in \omega^{\omega}\}$: self-solvable (trivial) problem

Product is a basic operator on the Weihrauch lattice.

• $P \times Q = \{((f, g), (u, v)) : (f, u) \in P, (g, v) \in Q\}$ $(P \times Q \ge_W \sup(P, Q) \text{ if } P, Q \ge_W \text{ id.})$

- X: Polish space with computable representation
 - C_X (closed choice on X)

instance: (a negative code for) a closed set $A \subseteq X$ solution: a point in A

- K_X (compact choice on X) instance: (a code by 2⁻ⁿ-nets for) a compact set A ⊆ X solution: a point in A
- lim_X (limit operator)

instance: a convergent sequence $\langle x_i \rangle_{i \in \omega}$ solution: $x = \lim x_i$

• BWT_X (Bolzano-Weierstraß theorem)

instance: totally bounded sequence $\langle x_i \rangle_{i \in \omega}$ solution: convergent subsequence of $\langle x_i \rangle_{i \in \omega}$

• IVT (intermediate value theorem)

instance: continuous function $f : [0, 1] \rightarrow \mathbb{R}$ such that $f(0)f(1) \le 0$ solution: $x \in [0, 1]$ such that f(x) = 0

- WKL (weak König's lemma) instance: infinite tree T ⊆ 2^{<ω} solution: a path of T
- WWKL (weak weak König's lemma) instance: infinite tree T ⊆ 2^{<ω} with positive measure solution: a path of T
- MLR (Martin-Löf random)
 - instance: $x \in \mathbb{R}$ solution: Martin-Löf random real relative to x
- RTⁿ_k (Ramsey's theorem)

instance: function $f : [\mathbb{N}]^n \to k$ solution: an infinite homogeneous set for *f*

• $RT^n_{<\infty}$ (Ramsey's theorem)

instance: $k \in \omega$ and function $f : [\mathbb{N}]^n \to k$ solution: an infinite homogeneous set for f

"First-order parts" of Weihrauch degrees Bounded problems and bounded parts Weihrauch reduction Zoo of Weihrauch degrees

Zoo of Weihrauch degrees

 There are so many results on the study of the structure of Weihrauch degrees.

Brattka, Pauly, Marcone, Dzhafarov,...

Zoo from V. Brattka's Tutorial slides. See http://cca-net.de/publications/weibib.php.

Too complicated???

 \Rightarrow want some reasonable measure for Weihrauch degrees.

Contents

1) Weihrauch degrees

- Weihrauch reduction
- Zoo of Weihrauch degrees
- Pirst-order parts" of Weihrauch degrees
 - Two veiwpoints
 - Numerical/first-order problems
- 3 Bounded problems and bounded parts
 - Bounded problems from arithmetic
 - Bounded parts of degrees

Two veiwpoints

Numerical/first-order problems

Two viewpoints for axioms of second-order arithmetic

A, B axioms of second-order arithmetic (including RCA₀).

Degree-theoretic strength:

- Consider the complexity of $S \subseteq \mathcal{P}(\omega)$ such that $(\omega, S) \models A$.
- Strength can be described as the complexity of Turing ideals.
- Observation (though not exactly accurate)
 "(ω, S) ⊨ A ⇒ (ω, S) ⊨ B for any S means A plus strong enough induction implies B."

First-order strength/proof-theoretic strength

- Consider the class of first-order/ Π_1^1 -consequences of A.
- It can be compared with the hierarchy of induction/bounding principles.

Two viewpoints for Weihrauch degrees?

Degree-theoretic strength:

- Computable reduction ≤_c well reflects Turing-degree-theoretic strength.
- Turing-degree-theoretic part of *P*:

 ${}^{Td}(P) := \{ (f,g) \in \omega^{\omega} : f = f_0, g \ge_T g_0 \text{ for some } (f_0,g_0) \in P \}.$ Then, ${}^{Td}(P) \le_W P \text{ and } Q \le_c P \Rightarrow Q \le_c {}^{Td}(P).$

First-order strength?

 Is there a good measure corresponding to the first-order parts in arithmetic?

Numerical/first-order problems

(Identify $n \in \omega$ with the constant function $\lambda x.n \in \omega^{\omega}$.)

- A problem P is said to be numerical/first-order if P(f) ⊆ ω for any f ∈ dom(P).
- * Note that any solution of *P* doesn't have any computational power since it is just a constant function.
- There are many non-trivial first-order problems, e.g., $C_2, C_{\mathbb{N}}, \text{lim}_{\mathbb{N}}, \ldots$

Theorem (Numerical/first-order part)

For a given problem P, the numerical/first-order part of P

$$(P) := \max\{Q \leq_W P : Q \text{ is first-order}\}$$

always exists.

• Then,
$${}^{1}(P) \leq_{W} P$$
, and,
 $Q \leq_{W} P \Rightarrow Q \leq_{W} {}^{1}(P)$ for any numerical Q .

Two veiwpoints Numerical/first-order problems

Numerical/first-order parts

The first-order part just describes "non-uniformity" of a problem.

Theorem

A problem P is computably trivial (i.e., $P \leq_c id$) if and only if $P \leq_W Q$ for some first-order problem Q.

Indeed, it is orthogonal to the degree theoretic part.

Theorem

Let $P \ge_W$ id.

•
$$Td(Td(P)) = Td(P)$$
 and $1(1(P)) = 1(P)$.

$$2 Td(^1(P)) \equiv_W {}^1(^{Td}(P)) \equiv_W id.$$

Two veiwpoints Numerical/first-order problems

Numerical/first-order parts

Note that $^{Td}(P)$ and $^{1}(P)$ do not capture the exact power of *P*.

- Let $P = \inf(WKL, C_{\mathbb{N}})$. Then, $^{Td}(P) \equiv_W {}^1(P) \equiv_W id$, but $P >_W id$.
- * Similar problem happens in arithmetic, e.g., $WKL \vee I\Sigma_2^0$ implies neither the existence of non-recursive set nor non-trivial induction over RCA_0 .

The notion of non-diagonalizability introduced by Hirschfeld and Jockusch provides a nice condition to be first-order trivial.

Theorem (nondiagonalizable vs first-order trivial)

If a problem P is non-diagonalizable, i.e., there is a Turing functional Ψ such that

$$\Psi^{f}(\sigma) = 0 \Leftrightarrow \exists g \supseteq \sigma(g \in P(f)) \text{ for any } f \in \operatorname{dom}(P),$$

then, $^{1}(P)$ is trivial.

Classification by first-order strength

Here, $P' = P \circ \lim_{\mathbb{N}^{\mathbb{N}}}$ (the jump of *P*).

Question

Brattka's observation:

$$\mathsf{K}_{\mathbb{N}} <_{W} \mathsf{C}_{\mathbb{N}} <_{W} \mathsf{K}'_{\mathbb{N}} <_{W} \mathsf{C}'_{\mathbb{N}} <_{W} \mathsf{K}''_{\mathbb{N}} <_{W} \mathsf{C}''_{\mathbb{N}} <_{W} \cdots$$

does this hierarchy correspond to the Kirby-Paris hierarchy of induction and bounding in arithmetic?

Contents

Weihrauch degrees

- Weihrauch reduction
- Zoo of Weihrauch degrees
- 2 "First-order parts" of Weihrauch degrees
 - Two veiwpoints
 - Numerical/first-order problems

3 Bounded problems and bounded parts

- Bounded problems from arithmetic
- Bounded parts of degrees

Bounded problems from arithmetic

Bounded parts of degrees

Bounded problems from arithmetic Bounded parts of degrees

Problems from arithmetic I

We introduce problems corresponding to

- bounded comprehension (2nd-order form of induction),
- bounded separation (2nd-order form of bounding).
- Let $\Gamma = \Sigma_n^0$ or Π_n^0 .
 - Γ-truth
 - instance: $\langle A, \varphi \rangle$ where $A \subseteq \omega$ and $\varphi(X) \in \Gamma^X$,
 - solution: $i \in \{0, 1\}$ answering whether $\omega \models \varphi(A)$ or not.
 - 2 C-choice
 - instance: $\langle A, \varphi_0, \varphi_1 \rangle$ where $A \subseteq \omega$ and $\varphi_i(X) \in \Gamma^X$ such that $\omega \models \varphi_0(A) \lor \varphi_1(A)$,
 - solution: $i \in \{0, 1\}$ such that $\omega \models \varphi_i(A)$.

Bounded problems from arithmetic Bounded parts of degrees

Problems from arithmetic II

For $n \ge 1$, we may easily see that

$$\Sigma_n^0$$
-choice $\leq_W \Pi_n^0$ -choice $\leq_W \Sigma_n^0$ -truth $\leq_W \Sigma_{n+1}^0$ -choice.

We see later that this is strict in a strong sense.

Proposition

$$\Sigma_0^0 \text{-truth} \equiv_W \Sigma_1^0 \text{-choice} \equiv_W \text{id.}$$

2 For
$$n \ge 1$$
, $\prod_{n=0}^{\infty} -\text{choice} \equiv_W C_2^{(n-1)} \equiv_W \text{LLPO}^{(n-1)}$.

• For
$$n \ge 1$$
, Σ_n^0 -truth $\equiv_W LPO^{(n-1)}$

• For
$$n \ge 2$$
, Σ_n^0 -choice $\equiv_W \Delta_n^0$ -truth $\equiv_W \lim_2^{(n-2)}$.

Bounded problems from arithmetic Bounded parts of degrees

Hierarchy of problems from arithmetic

- Given a problem *P*, *P*^{*} is defined as follows:
 - instance: $k \in \omega$ and $\langle f_i \in \text{dom}(P) : i < k \rangle$,
 - solution: $\langle g_i : i < k \rangle$ such that $g_i \in P(f_i)$.

Theorem (arithmetical hierarchy of bounded principles)

For $n \ge 1$ we have the following.

① (
$$\Sigma_n^0$$
-choice)^{*} ≱_W Π_n⁰-choice.

Thus, we have the following hierarchy for $n \ge 1$:

$$(\Sigma_n^0$$
-choice)* <_W $(\Pi_n^0$ -choice)* <_W $(\Sigma_n^0$ -truth)* <_W $(\Sigma_{n+1}^0$ -choice)*.

Bounded comprehension, bounded separation, least number principle

F-bC (bounded choice)

- instance: (A, φ, k) where A ⊆ ω, φ(X, x) ∈ Γ^X and k ∈ ω such that ω ⊨ ∃x < k φ(A, x),
- solution: $i \in \{0, ..., k 1\}$ such that $\omega \models \varphi(A, i)$.
- I -bLC (bounded least choice)
 - instance: (A, φ, k) where A ⊆ ω, φ(X, x) ∈ Γ^X and k ∈ ω such that ω ⊨ ∃x < k φ(A, x),
 - solution: least $i \in \{0, ..., k 1\}$ such that $\omega \models \varphi(A, i)$.

Proposition

Let $n \geq 1$.

• $(\Sigma_n^0$ -choice)* $\equiv_W \Sigma_n^0$ -bC $\equiv_W \Delta_n^0$ -bLC.

(corresponds to bound- Δ_n^0 -CA, $L\Delta_n^0$) $\approx I\Delta_n^0$

$$(\Pi_n^0 - \text{choice})^* \equiv_W \Pi_n^0 - \text{bC}.$$

(corresponds to bound- Σ_n^0 -SEP) $\approx B\Sigma_n^0$

③
$$(\Sigma_n^0 \text{-truth})^* \equiv_W \Sigma_n^0 \text{-bLC} \equiv_W \Pi_n^0 \text{-bLC}.$$

(corresponds to bound-Σ_n^0 -CA, LΣ_n^0) ≈ IΣ_n^0

Bounded problems from arithmetic Bounded parts of degrees

Bounded problems

- A first-order problem P is said to be bounded if there is a Turing functional τ such that for any $X \in \text{dom}(\mathsf{P})$ of $\mathsf{P}, \tau^X(0) \downarrow$ and $\mathsf{P}(X) \subseteq [0, \tau^X(0)]$.
- A first-order problem P is said to be *k*-bounded if $P(X) \subseteq [0, k]$ for any $X \in \text{dom}(P)$.

Theorem

- If a problem P is k-bounded, then C_{k+1} is not Weihrauch reducible to P.
- 2 If a problem P is bounded, then $C_{\mathbb{N}}$ is not Weihrauch reducible to P.

Bounded problems from arithmetic Bounded parts of degrees

Bounded part

One can consider the bounded part of a degree as well.

Theorem (Bounded part)

For a given problem P, the bounded part of P

$$^{1}(P) := \max\{Q \leq_{W} P : Q \text{ is bounded}\}$$

always exists.

b

Here are some examples.

Theorem

• For
$$n \ge 1$$
, ${}^{b1}(\lim_{\mathbb{N}^{\mathbb{N}}}^{(n-1)}) \equiv_W {}^{b1}(C_{\mathbb{N}}^{(n-1)}) \equiv_W (\Sigma_{n+1}^0$ -choice)*.

• For
$$n \ge 0$$
, ${}^{b1}(\mathsf{WKL}^{(n)}) \equiv_W {}^{b1}(\mathsf{K}^{(n)}_{\mathbb{N}}) \equiv_W (\Pi^0_{n+1}\text{-choice})^*$.

Note that

$$\mathsf{WKL} <_W \mathsf{lim}_{\mathbb{N}^{\mathbb{N}}} <_W \mathsf{WKL'} <_W \mathsf{lim}'_{\mathbb{N}^{\mathbb{N}}} <_W \mathsf{WKL''} <_W \dots$$

Bounded problems from arithmetic Bounded parts of degrees

Question

Brattka's observation:

$$\mathsf{K}_{\mathbb{N}} <_{W} \mathsf{C}_{\mathbb{N}} <_{W} \mathsf{K}'_{\mathbb{N}} <_{W} \mathsf{C}'_{\mathbb{N}} <_{W} \mathsf{K}''_{\mathbb{N}} <_{W} \mathsf{C}''_{\mathbb{N}} <_{W} \cdots$$

Does this hierarchy correspond to the following Kirby-Paris hierarchy?

$$B\Sigma_1 < I\Sigma_1 < B\Sigma_2 < I\Sigma_2 < B\Sigma_3 < \cdots$$

It seems this hierarchy reasonably fits with the hierarchy in arithmetic.

•
$${}^{b1}(\mathsf{K}^{(n)}_{\mathbb{N}}) \equiv_W (\Pi^0_{n+1}\text{-choice})^*,$$

•
$${}^{b1}(C^{(n)}_{\mathbb{N}}) \equiv_W (\Sigma^0_{n+2}\text{-choice})^*.$$

However, they both closer to $B\Sigma_n^0$..., indeed it fits better with

$$B\Sigma_1 < I\Delta_2 \le B\Sigma_2 < I\Delta_3 \le B\Sigma_3 < \cdots$$

Bounded problems from arithmetic Bounded parts of degrees

Classification by bounded parts

Here are more examples:

•
$$(\Sigma_1^0 \text{-choice})^* \equiv_W \text{id} \equiv_W {}^{b1}(\text{MLR})$$

• $(\Pi_1^0 \text{-choice})^* \equiv_W (C_2)^* \equiv_W {}^{b1}(\text{K}_{\mathbb{R}^n}) \equiv_W {}^{b1}(\text{WKL}) \equiv_W {}^{b1}(\text{IVT})$
• $(\Sigma_2^0 \text{-choice})^* \equiv_W (\lim_2)^* \equiv_W {}^{b1}(\lim_{\mathbb{N}^N}) \equiv_W {}^{b1}(C_{\mathbb{R}^n}) \equiv_W {}^{b1}(\text{BWT}_{\mathbb{R}^n}) \equiv_W {}^{b1}(\lim_{\mathbb{N}^N})$
• $(\Pi_{n+1}^0 \text{-choice})^* \equiv_W {}^{b1}(\text{RT}_{<\infty}^n)$

" $\operatorname{RT}_{<\infty}^n$ is conservative over $(\prod_{n+1}^0 \operatorname{-choice})^*$ for bounded principles."

Better understanding of Weihrauch separation

One may understand some separations in a better way:

Ex. 1: MLR $<_W$ WWKL $<_W$ WKL $^{Td}(MLR) \equiv ^{Td}(WWKL)$, but $^{b1}(MLR) < ^{b1}(WWKL)$, $^{b1}(WWKL) \equiv ^{b1}(WKL)$, but $^{Td}(WWKL) < ^{Td}(WKL)$.

Ex. 2: IVT <_W WKL <_W C_R ${}^{b1}(IVT) \equiv {}^{b1}(WKL)$, but ${}^{Td}(IVT) < {}^{Td}(WKL)$, ${}^{Td}(WKL) \equiv {}^{Td}(C_R)$, but ${}^{b1}(WKL) < {}^{b1}(C_R)$.

Classification by computability strength

id	\equiv_c	$IVT, C_{\mathbb{N}}, RT^1$
∧ _c WWKL	≡c	MLR
∧ _c WKL	≡c	$C_{\mathbb{R}}, C_{2^{\mathbb{N}}}, BWT_{\mathbb{R}^n}$
lim	≡ _c	$lim_{\mathbb{R}}$
^c WKL′	≥c	RT ²
∧ _c lim′		
∧ _c		
: ^c		
∆¦CA ∧ _c	≡ _c	ATR ₁
$C_{\mathbb{N}^{\mathbb{N}}}$	\equiv_c	$\Sigma_1^1 C_{\mathbb{N}^{\mathbb{N}}}$

Classification by bounded strength

(inc. recent results with Patey and Angles D'Auriac)

id	≡w,b1	MLR, DNR, PA
∧ _{W,b1} C ₂ *	≡ _{W,b1}	$LLPO^*,WKL,WWKL,IVT,C_{2^{\mathbb{N}}}$
LPO*	≡ _{W,b1}	$min_{\mathbb{N} \to \mathbb{N}}$
^ _{W,b1} lim ₂ *	≡ _{W,b1}	$lim,BWT_{\mathbb{R}^n},lim_{\mathbb{N}},C_{\mathbb{R}}$
$C_{2}^{\prime *}$	≡ _{W,b1}	WKL', RT ¹
	≡w,b1	lim × lim
C ₂ ^{''*}	≡w,b1	WKL", RT ²
$^{\wedge}W,b1$ $\Delta^1_1C_2^*$	≡ _{W,b1}	Δ_1^1 CA, ATR ₁
$\Sigma_1^1 C_2^*$	≡w,b1	$\Sigma_1^1 C_{2^\mathbb{N}}, C_{\mathbb{N}^\mathbb{N}}, \Sigma_1^1 C_{\mathbb{N}^\mathbb{N}}$

Some questions

Question

Is there a nice characterization of a problem whose first-order part is trivial, i.e., ${}^{1}(P) \equiv_{W} (id)$?

If a problem ${\it P}$ is non-diagonalizable, i.e., there is a Turing functional Ψ such that

$$\Psi^{f}(\sigma) = \mathbf{0} \Leftrightarrow \exists g \supseteq \sigma(g \in P(f)) \text{ for any } f \in \operatorname{dom}(P),$$

then, $^{1}(P)$ is trivial.

However,

 TS¹₃ (thin set theorem for 3-colors) is not below any non-diagonalizable degree, but ¹(TS¹₃) is trivial.

Question

What is the first-order/bounded part of RT₂ⁿ?

Indeed, the strength of Ramsey's theorem in Weihrauch degrees is still complicated with this viewpoint.

Thank you!

This work is partially supported by

JSPS Core-to-Core Program (A. Advanced Research Networks),

JSPS KAKENHI (grant numbers 16K17640 and 15H03634), and

JAIST Research Grant 2018(Houga).