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Weihrauch reducibility

For f , g ∈ ωω,

Turing reducibility: f ≤T g ⇔“f is computable from g”.

For A ,B ⊆ ωω,

Muchnik reducibility: A ≤w B ⇔
“any element f ∈ B computes an element f ≥T g ∈ A”,

Medvedev reducibility: A ≤s B ⇔
“there is a uniform method Φ to convert an element f ∈ B
into an element Φf = g ∈ A”.

For P,Q ⊆ ωω × ωω,

Computable reducibility: P ≤c Q,

Weihrauch reducibility: P ≤W Q.
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Weihrauch reducibility

Consider P ⊆ ωω × ωω as P : ⊆ωω → P(ωω) \ {∅}.
Computable reducibility: P ≤c Q ⇔
∀f ∈ dom(P)∃g ≤T f such that g ∈ dom(Q) and P(f) ≤f

w Q(g)
(i.e., ∀u ∈ Q(g)∃v ≤T u ⊕ f such that u ∈ P(f))

Weihrauch reducibility: P ≤W Q ⇔
there are Turing functionals Φ,Ψ such that
∀f ∈ dom(P) Φf = g ∈ dom(Q) and P(f) ≤s Q(g) via Ψf

(i.e., ∀u ∈ Q(g)Ψu⊕f = v ∈ P(f))

P describes a problem of the form ∀f∃g(φ(f)→ ψ(f , g)).

≤W is often considered as a reduction on Π1
2-problems (but

not really).

f ∈ dom(P): instance/input of a problem P.

g ∈ P(f): P-solution/output for g.
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Weihrauch lattice

Degrees induced by Weihrauch reducibility form a lattice.

sup(P,Q) = P ⊔ Q
=
{
((0, f), g) : (f , g) ∈ P

} ∪ {((1, f), g) : (f , g) ∈ Q
}

inf(P,Q) = P ⊓ Q
=
{
((f , g), (0, h)) : (f , g) ∈ dom(P) × dom(Q), (f , h) ∈ P

}
∪ {((f , g), (1, h)) : (f , g) ∈ dom(P) × dom(Q), (g, h) ∈ Q

}
0: a problem with empty domain (i.e., 0 = ∅): easiest problem

* One may add ∞ as the hardest problem: dom(∞) = ωω, ∞(f) = ∅

Here, we mainly focus on problems harder than “self-solvable”.

1 := id =
{
(f , f) : f ∈ ωω}: self-solvable (trivial) problem

Product is a basic operator on the Weihrauch lattice.

P × Q =
{
((f , g), (u, v)) : (f , u) ∈ P, (g, v) ∈ Q

}
(P × Q ≥W sup(P,Q) if P,Q ≥W id.)
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Weihrauch degrees I

X: Polish space with computable representation
CX (closed choice on X)

instance: (a negative code for) a closed set A ⊆ X
solution: a point in A

KX (compact choice on X)
instance: (a code by 2−n-nets for) a compact set A ⊆ X
solution: a point in A

limX (limit operator)
instance: a convergent sequence ⟨xi⟩i∈ω
solution: x = lim xi

BWTX (Bolzano-Weierstraß theorem)
instance: totally bounded sequence ⟨xi⟩i∈ω
solution: convergent subsequence of ⟨xi⟩i∈ω

IVT (intermediate value theorem)
instance: continuous function f : [0, 1]→ R such that
f(0)f(1) ≤ 0
solution: x ∈ [0, 1] such that f(x) = 0



Weihrauch degrees II

WKL (weak König’s lemma)
instance: infinite tree T ⊆ 2<ω

solution: a path of T

WWKL (weak weak König’s lemma)
instance: infinite tree T ⊆ 2<ω with positive measure
solution: a path of T

MLR (Martin-Löf random)
instance: x ∈ R
solution: Martin-Löf random real relative to x

RTn
k (Ramsey’s theorem)

instance: function f : [N]n → k
solution: an infinite homogeneous set for f

RTn
<∞ (Ramsey’s theorem)

instance: k ∈ ω and function f : [N]n → k
solution: an infinite homogeneous set for f

...
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Zoo of Weihrauch degrees

There are so many results on the study of the structure of
Weihrauch degrees.

Brattka, Pauly, Marcone, Dzhafarov,. . .

Zoo from V. Brattka’s Tutorial slides.
See http://cca-net.de/publications/weibib.php.

Too complicated???
⇒ want some reasonable measure for Weihrauch degrees.
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Two viewpoints for axioms of second-order arithmetic

A ,B axioms of second-order arithmetic (including RCA0).

Degree-theoretic strength:

Consider the complexity of S ⊆ P(ω) such that (ω,S) |= A.

Strength can be described as the complexity of Turing ideals.

Observation (though not exactly accurate)
“(ω,S) |= A ⇒ (ω,S) |= B for any S means A plus strong
enough induction implies B.”

First-order strength/proof-theoretic strength

Consider the class of first-order/Π1
1-consequences of A.

It can be compared with the hierarchy of induction/bounding
principles.
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Two viewpoints for Weihrauch degrees?

Degree-theoretic strength:

Computable reduction ≤c well reflects Turing-degree-theoretic
strength.

Turing-degree-theoretic part of P:
Td(P) := {(f , g) ∈ ωω : f = f0, g ≥T g0 for some (f0, g0) ∈ P}.

Then, Td(P) ≤W P and Q ≤c P ⇒ Q ≤c
Td(P).

First-order strength?

Is there a good measure corresponding to the first-order parts
in arithmetic?
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Numerical/first-order problems

(Identify n ∈ ω with the constant function λx.n ∈ ωω.)

A problem P is said to be numerical/first-order if P(f) ⊆ ω for
any f ∈ dom(P).

* Note that any solution of P doesn’t have any computational
power since it is just a constant function.

There are many non-trivial first-order problems, e.g.,
C2,CN, limN, . . .

Theorem (Numerical/first-order part)

For a given problem P, the numerical/first-order part of P
1(P) := max{Q ≤W P : Q is first-order}

always exists.

Then, 1(P) ≤W P, and,
Q ≤W P ⇒ Q ≤W

1(P) for any numerical Q.
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Numerical/first-order parts

The first-order part just describes “non-uniformity” of a problem.

Theorem
A problem P is computably trivial (i.e., P ≤c id) if and only if
P ≤W Q for some first-order problem Q.

Indeed, it is orthogonal to the degree theoretic part.

Theorem
Let P ≥W id.

1 Td(Td(P)) = Td(P) and 1(1(P)) = 1(P).
2 Td(1(P)) ≡W

1(Td(P)) ≡W id.
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Numerical/first-order parts

Note that Td(P) and 1(P) do not capture the exact power of P.
Let P = inf(WKL,CN). Then, Td(P) ≡W

1(P) ≡W id, but
P >W id.

* Similar problem happens in arithmetic, e.g., WKL ∨ IΣ0
2

implies neither the existence of non-recursive set nor
non-trivial induction over RCA0.

The notion of non-diagonalizability introduced by Hirschfeld and
Jockusch provides a nice condition to be first-order trivial.

Theorem (nondiagonalizable vs first-order trivial)

If a problem P is non-diagonalizable, i.e., there is a Turing
functional Ψ such that

Ψf (σ) = 0⇔ ∃g ⊇ σ(g ∈ P(f)) for any f ∈ dom(P),

then, 1(P) is trivial.
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Classification by first-order strength
Here, P′ = P ◦ limNN (the jump of P).

id ≡W
1(MLR)

(MLR >W id)

KN ≡W
1(KRn) ≡W

1(WKL) ≡W
1(WWKL) ≡W

1(IVT)

(KRn ≥W WKL >W IVT >W KN)

CN ≡ 1(limNN) ≡W
1(CRn) ≡W

1(BWTRn) ≡W
1(limN)

(limNN ≥W CRn ≥W BWTRn ≥W limN)

(KN)′ ≡W RT1
<∞ ≡W

1((WKL)′)

(C2)
(n) ≤W

1(RTn
2) ≤W (KN)(n)

...

Question
Brattka’s observation:

KN <W CN <W K′N <W C′N <W K′′N <W C′′N <W · · ·
does this hierarchy correspond to the Kirby-Paris hierarchy of
induction and bounding in arithmetic?



Weihrauch degrees
“First-order parts” of Weihrauch degrees

Bounded problems and bounded parts

Bounded problems from arithmetic
Bounded parts of degrees

Contents

1 Weihrauch degrees
Weihrauch reduction
Zoo of Weihrauch degrees

2 “First-order parts” of Weihrauch degrees
Two veiwpoints
Numerical/first-order problems

3 Bounded problems and bounded parts
Bounded problems from arithmetic
Bounded parts of degrees

Keita Yokoyama Weihrauch degrees of numerical problems 17 / 30



Weihrauch degrees
“First-order parts” of Weihrauch degrees

Bounded problems and bounded parts

Bounded problems from arithmetic
Bounded parts of degrees

Problems from arithmetic I

We introduce problems corresponding to

bounded comprehension (2nd-order form of induction),

bounded separation (2nd-order form of bounding).

Let Γ = Σ0
n or Π0

n.
1 Γ-truth

instance: ⟨A , φ⟩ where A ⊆ ω and φ(X) ∈ ΓX ,
solution: i ∈ {0, 1} answering whether ω |= φ(A) or not.

2 Γ-choice
instance: ⟨A , φ0, φ1⟩ where A ⊆ ω and φi(X) ∈ ΓX such that
ω |= φ0(A) ∨ φ1(A),
solution: i ∈ {0, 1} such that ω |= φi(A).

Keita Yokoyama Weihrauch degrees of numerical problems 18 / 30



Weihrauch degrees
“First-order parts” of Weihrauch degrees

Bounded problems and bounded parts

Bounded problems from arithmetic
Bounded parts of degrees

Problems from arithmetic II

For n ≥ 1, we may easily see that

Σ0
n-choice ≤W Π0

n-choice ≤W Σ0
n-truth ≤W Σ0

n+1-choice.

We see later that this is strict in a strong sense.

Proposition
1 Σ0

0-truth ≡W Σ0
1-choice ≡W id.

2 For n ≥ 1, Π0
n-choice ≡W C(n−1)

2 ≡W LLPO(n−1).
3 For n ≥ 1, Σ0

n-truth ≡W LPO(n−1).

4 For n ≥ 2, Σ0
n-choice ≡W ∆0

n-truth ≡W lim(n−2)
2 .
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Hierarchy of problems from arithmetic

Given a problem P, P∗ is defined as follows:
instance: k ∈ ω and ⟨fi ∈ dom(P) : i < k ⟩,
solution: ⟨gi : i < k ⟩ such that gi ∈ P(fi).

Theorem (arithmetical hierarchy of bounded principles)

For n ≥ 1 we have the following.
1 (Σ0

n-choice)∗ ̸≥W Π0
n-choice.

2 (Π0
n-choice)∗ ̸≥W Σ0

n-truth.
3 (Σ0

n-truth)∗ ̸≥W Σ0
n+1-choice.

Thus, we have the following hierarchy for n ≥ 1:

(Σ0
n-choice)∗ <W (Π0

n-choice)∗ <W (Σ0
n-truth)∗ <W (Σ0

n+1-choice)∗.
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Bounded comprehension, bounded separation, least number principle

1 Γ-bC (bounded choice)
instance: ⟨A , φ, k ⟩ where A ⊆ ω, φ(X , x) ∈ ΓX and k ∈ ω such
that ω |= ∃x < k φ(A , x),
solution: i ∈ {0, . . . , k − 1} such that ω |= φ(A , i).

2 Γ-bLC (bounded least choice)
instance: ⟨A , φ, k ⟩ where A ⊆ ω, φ(X , x) ∈ ΓX and k ∈ ω such
that ω |= ∃x < k φ(A , x),
solution: least i ∈ {0, . . . , k − 1} such that ω |= φ(A , i).

Proposition
Let n ≥ 1.

1 (Σ0
n-choice)∗ ≡W Σ0

n-bC ≡W ∆0
n-bLC.

(corresponds to bound-∆0
n-CA, L∆0

n) ≈ I∆0
n

2 (Π0
n-choice)∗ ≡W Π0

n-bC.

(corresponds to bound-Σ0
n-SEP) ≈ BΣ0

n
3 (Σ0

n-truth)∗ ≡W Σ0
n-bLC ≡W Π0

n-bLC.

(corresponds to bound-Σ0
n-CA, LΣ0

n) ≈ IΣ0
n
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Bounded problems

A first-order problem P is said to be bounded if there is a
Turing functional τ such that for any X ∈ dom(P) of P, τX(0) ↓
and P(X) ⊆ [0, τX(0)].

A first-order problem P is said to be k-bounded if
P(X) ⊆ [0, k ] for any X ∈ dom(P).

Theorem
1 If a problem P is k-bounded, then Ck+1 is not Weihrauch

reducible to P.
2 If a problem P is bounded, then CN is not Weihrauch reducible

to P.
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Bounded part

One can consider the bounded part of a degree as well.

Theorem (Bounded part)

For a given problem P, the bounded part of P
b1(P) := max{Q ≤W P : Q is bounded}

always exists.

Here are some examples.

Theorem

For n ≥ 1, b1(lim(n−1)
NN

) ≡W
b1(C(n−1)

N ) ≡W (Σ0
n+1-choice)∗.

For n ≥ 0, b1(WKL(n)) ≡W
b1(K(n)

N ) ≡W (Π0
n+1-choice)∗.

Note that
WKL <W limNN <W WKL′ <W lim′

NN
<W WKL′′ <W . . .
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Question
Brattka’s observation:

KN <W CN <W K′N <W C′N <W K′′N <W C′′N <W · · ·
Does this hierarchy correspond to the following Kirby-Paris
hierarchy?

BΣ1 < IΣ1 < BΣ2 < IΣ2 < BΣ3 < · · ·

It seems this hierarchy reasonably fits with the hierarchy in
arithmetic.

b1(K(n)
N ) ≡W (Π0

n+1-choice)∗,

b1(C(n)
N ) ≡W (Σ0

n+2-choice)∗.

However, they both closer to BΣ0
n. . . , indeed it fits better with

BΣ1 < I∆2 ≤ BΣ2 < I∆3 ≤ BΣ3 < · · ·
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Classification by bounded parts

Here are more examples:

(Σ0
1-choice)∗ ≡W id ≡W

b1(MLR)

(Π0
1-choice)∗ ≡W (C2)

∗ ≡W
b1(KRn) ≡W

b1(WKL) ≡W
b1(IVT)

(Σ0
2-choice)∗ ≡W (lim2)

∗ ≡W
b1(limNN) ≡W

b1(CRn)
≡W

b1(BWTRn) ≡W
b1(limN)

(Π0
n+1-choice)∗ ≡W

b1(RTn
<∞)

“RTn
<∞ is conservative over (Π0

n+1-choice)∗ for bounded principles.”
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Better understanding of Weihrauch separation

One may understand some separations in a better way:

Ex. 1: MLR <W WWKL <W WKL
Td(MLR) ≡ Td(WWKL), but b1(MLR) < b1(WWKL),
b1(WWKL) ≡ b1(WKL), but Td(WWKL) < Td(WKL).

Ex. 2: IVT <W WKL <W CR
b1(IVT) ≡ b1(WKL), but Td(IVT) < Td(WKL),
Td(WKL) ≡ Td(CR), but b1(WKL) < b1(CR).
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Classification by computability strength

id ≡c IVT,CN,RT1

>c
WWKL ≡c MLR

>c
WKL ≡c CR,C2N ,BWTRn

>c
lim ≡c limR

>c
WKL′ ≥c RT2
>c
lim′

>c
...

>c
∆1

1CA ≡c ATR1

>c
CNN ≡c Σ1

1CNN



Classification by bounded strength
(inc. recent results with Patey and Angles D’Auriac)

id ≡W ,b1 MLR,DNR,PA

>W ,b1

C2
∗ ≡W ,b1 LLPO∗,WKL,WWKL, IVT,C2N

>W ,b1

LPO∗ ≡W ,b1 minN→N
>W ,b1

lim2
∗ ≡W ,b1 lim,BWTRn , limN,CR

>W ,b1

C′2
∗ ≡W ,b1 WKL′,RT1

>W ,b1

lim′2
∗ ≡W ,b1 lim ⋆ lim

>W ,b1

C′′2
∗ ≡W ,b1 WKL′′,RT2

>W ,b1

∆1
1C2

∗ ≡W ,b1 ∆1
1CA,ATR1

>W ,b1

Σ1
1C2

∗ ≡W ,b1 Σ1
1C2N ,CNN ,Σ1

1CNN
...



Some questions

Question
Is there a nice characterization of a problem whose first-order part
is trivial, i.e., 1(P) ≡W (id)?

If a problem P is non-diagonalizable, i.e., there is a Turing
functional Ψ such that

Ψf (σ) = 0⇔ ∃g ⊇ σ(g ∈ P(f)) for any f ∈ dom(P),

then, 1(P) is trivial.
However,

TS1
3 (thin set theorem for 3-colors) is not below any

non-diagonalizable degree, but 1(TS1
3) is trivial.

Question

What is the first-order/bounded part of RTn
2?

Indeed, the strength of Ramsey’s theorem in Weihrauch degrees is
still complicated with this viewpoint.
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Thank you!
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