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A countable vector space A over Q+ iQ consists of a set
|A| ⊆ N with operations +, · and distinguished element
0 ∈ |A| such that (|A|,+, ·, 0) satisfies the usual properties of
a vector space over Q+ iQ.

Definition 1 (RCA0)

A (complex separable) Hilbert space H consists of a countable
vector space AH over Q+ iQ together with a function
(, ) : AH × AH → C satisfynig
(1) (x , x) ≥ 0, (x , y) = (y , x)

(2) (ax + by , z) = a(x , z) + b(y , z), (x , y) = (y , x)
for all x , y , z ∈ AH and a, b ∈ Q+ iQ.

An element x of H is a sequence ⟨xn : n ∈ N⟩ from AH such
that ||xn − xm|| =

√
< xn − xm, xn − xm > ≤ 2−n whenever

n ≤ m.



Let H be a Hilbert space. A closed subspace M is defined as a
separably closed subset of H , i.e, it is defined by a sequence
⟨xn : n ∈ N⟩ from H such that x ∈ M if and only if for any
ε > 0, ||x − xn|| < ε for some n.

Theorem 2 (RCA0, Avigad and Simic 06)

Each of the following statements is equivalent to ACA:
(1) For every closed subspace M of a Hilbert space H, the

orthogonal projection PM for M exists.
(2) For every closed subspace M of H and every point x in

H, the orthogonal projection of x on M exists.
(3) For every closed subspace M of H and every point x in

H, d(x ,M) exists.



For a subset A of H , x ∈ A⊥ is an element such that
(x , y) = 0 for all y ∈ A.

Theorem 3 (RCA0, Tanaka and Saito 96?)

The following statement is equivalent to ACA: For every closed
subspace M of a Hilbert space H, a closed subspace M⊥ exists.

Note that if M⊥ may not exist, we can state H = M ⊕M⊥ by
L2-formula. From Theorem 2, this holds.

Proposition 4 (RCA0)

The following statement is equivalent to ACA: For every
closed subspace M of a Hilbert space H, H = M ⊕M⊥



Theorem 5 (RCA0, Avigad and Simic 06)

Any Hilbert space has an orthonormal basis.

So two infinite dimensional Hilbert spaces are unitarily
equivalent. Let ⟨en : n ∈ N⟩ be an orthonormal basis of H . We
have Parseval’s identity:

||x ||2 =
∞∑
n=0

|an|2 where an = (x , en).



Definition 6 (RCA0)

A bounded linear operator T between Hilbert spaces H1 and
H2, is a function T : AH1 → H2 such that
(1) T is linear, i.e., T (q1x1 + q2x2) = q1T (x1) + q2T (x2) for

all q1, q2 ∈ Q+ iQ and x1, x2 ∈ AH1 .
(2) The norm of T is bounded, i.e., there exists a real

number K such that ||T (x)|| ≤ K ||x || for all x ∈ AH1 .
Then, for x = ⟨xn : n ∈ N⟩ ∈ H1, we define
T (x) = limn→∞ T (xn). So we can regarded T as
T : H1 → H2.

A linear operator T : H1 → H2 is bounded if and only if it is
continuous. A linear functional T is a linear operator from a
Hilbert space H to C.
The Riesz representation theorem is the statement that any
bounded linear functional T on a Hilbert space H , has a
unique vector y ∈ H such thatT (x) = (x , y) for each x ∈ H .

Fact 7 (RCA0,Tanaka and Saito 96?)

The Riesz representation theorem is equivalent to ACA.



The proof is simple. To prove the Riesz representation
theorem implies ACA, for an injective function f : N → N,
consider T : l2 → C; en 7→

∑
i<n 2

−f (i). Take y ∈ l2 such that

T (x) = (x , y) for each x ∈ l2, then ||y || =
∑∞

n=0 2
−f (n). □

Let ⟨xn : n ∈ N⟩ be a sequence from H and x ∈ H . Define
1 xn → x (w) ⇔ (xn, y) → (x , y) for all y ∈ H .
2 xn → x (s) ⇔ limn→∞ ||xn − x || = 0.

Proposition 8 (RCA0)

(1) xn → x (w) and ||xn|| → ||x ||, then xn → x (s)
(2) xn → x (w) and yn → y (s), then (xn, yn) → (x , y)

To prove (2), we use the Uniform boundedness principle which
is proved in RCA0.



Proposition 9 (RCA0)

The following statement is equivalent to ACA: any bounded
sequence ⟨xn : n ∈ N⟩ from a Hilbert space has a weakly
convergent subsequence.

For a bounded linear operator T : H1 → H2, T
∗ : H2 → H1 is

the adjoint if (Tx , y) = (x ,T ∗y) for all x ∈ H1 and y ∈ H2.

Theorem 10 (RCA0, Tanaka and Saito 96)

The existence of the adjoint for any bounded linear operator is
equivalent to ACA.

In fact, the following statement already implies ACA: For any
bounded linear operator T : l2 → l2 and any x ∈ l2, there
exists u ∈ l2 such that (Ty , x) = (y , u) for all y ∈ l2.



Basic properties of the adjoint, if it exists, are shown in RCA0.

Let ⟨Tn : n ∈ N⟩ be a sequence of bounded linear operators
from H1 to H2, and T a bounded linear operator from H1 to
H2. Define

1 Tn → T (w) ⇔ Tn(x) → T (x) (w) for all x ∈ H1.
2 Tn → T (s) ⇔ Tn(x) → T (x) (s) for all x ∈ H1.
3 Tn → T uniformly ⇔ there is a sequence ⟨rn : n ∈ N⟩ of

nonnegative reals such that ||Tn(x)− T (x)|| ≤ rn for all
n and x ∈ H1 and limn rn = 0.

Let Tn,T : H1 → H2 and Sn, S : H2 → H3.
If Tn → T (s) and Sn → S (s), then SnTn → ST (s).
If Tn → T (w) and their adjoints exist, then T ∗

n → T ∗ (w).
These and the uniform-continuity versions are proved in RCA0.



Theorem 11 (Banach-Steinhaus Theorem)

Let H1 and H2 be Hilbert spaces. Let ⟨Tn : n ∈ N⟩ be a
sequence of bounded linear operators from H1 to H2. If
⟨(Tnx , y) : n ∈ N⟩ is convergent for any x , y ∈ H1, then
there exists a bounded linear operator T : H1 → H2 such that
Tn → T (w).

Theorem 12 (RCA0)

The Banach-Steinhaus theorem is equivalent to ACA.

For self-adjoint operators T1 and T2 over H , T1 ≤ T2 if
(T1x , x) ≤ (T2x , x) for all x ∈ H . If O ≤ T , then O ≤ T n,
and if O ≤ T ≤ I , then T n ≤ Tm for m ≤ n, by the usual
induction.



Using the above version of the Banach-Steinhaus theorem, we
can show this.

Theorem 13 (RCA0)

The following statement is equivalent to ACA: Let
⟨Tn : n ∈ N⟩ be an increasing sequence of self-adjoint
operators bounded some self-adjoint operator S. Then it
strongly converges to some self-adjoint operator T .

For a closed subspace M , if the orthogonal projection PM

exists, PM is a positive self-adjoint operator which is
idempotent. Conversely, given an idempotent self-adjoint
operator P , we define a closed subspace M by
⟨P(a) : a ∈ AH⟩. Then P = PM .



Theorem 14 (RCA0)

Each of the following statements is equivalent to ACA:
(1) Any increasing sequence ⟨Pn : n ∈ N⟩ strongly converges

to some projection.
(2) Any decreasing sequence ⟨Pn : n ∈ N⟩ strongly converges

to some projection.

A bounded linear operator U : H → H is an isometry if
||U(x)|| = ||x || for all x ∈ H . A surjective isometry is said to
be unitary.
A bounded linear operator U : H ′ → H is a “partial” isometry
on H if ||U(x)|| = ||x || for all x ∈ H ′.



Proposition 15 (RCA0)

The following statement is equivalent to ACA: For any
bounded linear operator T of a Hilbert space H, there are a
positive self-adjoint Q and a “partial” isometry U such that
||Qx || = ||Tx || for all x ∈ H and T = UQ.

if T is normal, that is, T ∗T = TT ∗, then the above U can be
taken as unitary, as usual.
The idea of the proof. For an injective function f : N → N,
consider T : l2 → l2; e0 7→ e0, en 7→ 2−f (n−1)/2e0 n > 0. Then
||Q2e0||2 = 1 +

∑∞
n=0 2

−f (n). □



We say that a bounded operator T on H is invertible if T is a
bijection of H and its inverse is also bounded. The spectrum
of T , denoted by σ(T ), is the set of complex numbers z for
which T − zI is not invertible.

Proposition 16 (RCA0)

If T is self-adjoint, then σ(T ) is a bounded subset of reals.

ACA0 implies σ(T ) is closed.

Proposition 17 (Π1
1-CA0)

Any compact self-adjoint operator T has a sequence
⟨Pn : n ∈ N⟩ of projections and a sequence ⟨rn : n ∈ N⟩ of real
numbers such that PnPm = 0 for any n ̸= m and
limn→∞ rn = 0 and Tn =

∑
i<n riPi → T uniformly.
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