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A countable vector space A over Q + /QQ consists of a set

|A| C N with operations +, - and distinguished element

0 € |A] such that (|A], +, ,O) satisfies the usual properties of
a vector space over Q + iQ.

Definition 1 (RCAy)

A (complex separable) Hilbert space H consists of a countable
vector space Ay over Q + iQ together with a function
(,) : Ay x Ay — C satisfynig

(1) (x,x) >0, (x,y) = (v, x)

(2) (ax+ by,z) = a(x, z) + b(y, 2), (x,y) = (v, )
for all x,y,z € Ay and a,b € Q 4+ iQ.

An element x of H is a sequence (x, : n € N) from Ay such
that ||x, — Xm|| = /< Xo — Xm, Xp — Xm > < 27" whenever
n<m.




Let H be a Hilbert space. A closed subspace M is defined as a
separably closed subset of H, i.e, it is defined by a sequence
(xn : n € N) from H such that x € M if and only if for any
>0, ||x — x,|| < & for some n.

Theorem 2 (RCAg, Avigad and Simic 06)

Each of the following statements is equivalent to ACA:

(1) For every closed subspace M of a Hilbert space H, the
orthogonal projection Py, for M exists.

(2) For every closed subspace M of H and every point x in
H, the orthogonal projection of x on M exists.

(3) For every closed subspace M of H and every point x in
H, d(x, M) exists.




For a subset A of H, x € Al is an element such that
(x,y) =0forall y € A.

Theorem 3 (RCAg, Tanaka and Saito 967)

The following statement is equivalent to ACA: For every closed
subspace M of a Hilbert space H, a closed subspace M~ exists.

Note that if M+ may not exist, we can state H = M & M+ by
Lo-formula. From Theorem 2, this holds.

Proposition 4 (RCA,)

The following statement is equivalent to ACA: For every
closed subspace M of a Hilbert space H, H = M & M+




Theorem 5 (RCAg, Avigad and Simic 06)

Any Hilbert space has an orthonormal basis.

So two infinite dimensional Hilbert spaces are unitarily
equivalent. Let (e, : n € N) be an orthonormal basis of H. We
have Parseval’s identity:

oo
x| = Z aq|>  where a, = (x, e,).
n=0



Definition 6 (RCAy)

A bounded linear operator T between Hilbert spaces H, and

H,, is a function T : Ay, — H, such that

(1) T is linear, i.e., T(qix1 + g2X2) = q1 T (x1) + g2 T (x2) for
all g1,q, € Q+iQ and x1,x € Ap,.

(2) The norm of T is bounded, i.e., there exists a real
number K such that || T (x)|| < K||x|| for all x € Ap,.

Then, for x = (x, : n € N) € Hy, we define

T(x) = limp_00 T(xn). So we can regarded T as

T : Hl — H2.

A linear operator T : H; — H, is bounded if and only if it is
continuous. A linear functional T is a linear operator from a
Hilbert space H to C.

The Riesz representation theorem is the statement that any
bounded linear functional T on a Hilbert space H, has a
unique vector y € H such thatT(x) = (x, y) for each x € H.

Fact 7 (RCAg, Tanaka and Saito 967)

The Riesz representation theorem is equivalent to ACA.



The proof is simple. To prove the Riesz representation
theorem implies ACA, for an injective function f : N — N,

consider T : 2 — Cie, — >, 2-7() Take y € I2 such that
T(x) = (x,y) for each x € I, then |[y|| = Y02, 2=7(". O

n

Let (x, : n € N) be a sequence from H and x € H. Define
Q x, > x (W) & (xn,y) = (x,y) forally € H.
Q@ x, — x (s) & im0 ||X» — x|| = 0.

Proposition 8 (RCAy)

(1) x, — x (w) and ||xa|| = ||x||, then x, — x (s)
(2) xo = x (w) and y, =y (s), then (x5, yn) = (x,¥)

To prove (2), we use the Uniform boundedness principle which
is proved in RCA,.



Proposition 9 (RCA,)

The following statement is equivalent to ACA: any bounded
sequence (x, : n € N) from a Hilbert space has a weakly
convergent subsequence.

For a bounded linear operator T : H; — H,, T*: H, — H; is
the adjoint if (Tx,y) = (x, T*y) for all x € H; and y € H,.

Theorem 10 (RCAy, Tanaka and Saito 96)

The existence of the adjoint for any bounded linear operator is
equivalent to ACA.

In fact, the following statement already implies ACA: For any
bounded linear operator T : /> — [ and any x € /2, there
exists u € ? such that (Ty,x) = (y, u) for all y € .



Basic properties of the adjoint, if it exists, are shown in RCA,.

Let (T, : n € N) be a sequence of bounded linear operators
from H; to H,, and T a bounded linear operator from H; to
H,. Define
Q@ T, T (w)e Tyx) = T(x) (w) for all x € Hs.
Q@ T, T (s)e Tux)— T(x) (s) forall x € H;.
@ T, — T uniformly < there is a sequence (r, : n € N) of
nonnegative reals such that || T,(x) — T(x)|| < r, for all
nand x € H; and lim, r, = 0.

Let T,,, T : H1 — H2 and 5,,,5 : H2 — H3.

If T, — T (s)and S, — S (s), then S, T,, — ST (s).

If T, — T (w) and their adjoints exist, then T — T* (w).
These and the uniform-continuity versions are proved in RCA,.



Theorem 11 (Banach-Steinhaus Theorem)

Let Hy, and H, be Hilbert spaces. Let (T, : n € N) be a
sequence of bounded linear operators from H; to H,. If
((Tax,y) : n € N) is convergent for any x,y € Hy, then
there exists a bounded linear operator T : H1 — H, such that

T,— T (w)

Theorem 12 (RCA)
The Banach-Steinhaus theorem is equivalent to ACA.

For seIf—adJomt operators Ty and T, over H, T; < T, if
(Tix,x) < (Tax,x) forall x e H. If O < T then O < T,
and if O < T </, then T" < T™ for m < n, by the usual
induction.



Using the above version of the Banach-Steinhaus theorem, we
can show this.

Theorem 13 (RCA)

The following statement is equivalent to ACA: Let

(T, : n € N) be an increasing sequence of self-adjoint
operators bounded some self-adjoint operator S. Then it
strongly converges to some self-adjoint operator T .

For a closed subspace M, if the orthogonal projection Py
exists, Py is a positive self-adjoint operator which is
idempotent. Conversely, given an idempotent self-adjoint
operator P, we define a closed subspace M by

(P(a): a€ An). Then P = Py.



Theorem 14 (RCA)

Each of the following statements is equivalent to ACA:

(1) Any increasing sequence (P, : n € N) strongly converges
to some projection.

(2) Any decreasing sequence (P, : n € N) strongly converges
to some projection.

A bounded linear operator U : H — H is an isometry if
[|U(x)|| = ||x]| for all x € H. A surjective isometry is said to
be unitary.

A bounded linear operator U : H' — H is a “partial” isometry
on Hif ||U(x)|| = ||x|| for all x € H".



Proposition 15 (RCAy)

The following statement is equivalent to ACA: For any
bounded linear operator T of a Hilbert space H, there are a
positive self-adjoint Q and a “partial” isometry U such that
||Qx|| = || Tx|| for all x € H and T = UQ.

if T is normal, thatis, T*T = TT¥*, then the above U can be
taken as unitary, as usual.
The idea of the proof. For an injective function f : N — N,

consider T : 7 — [, eg — e, €, — 2~ F(""1/2ey n > 0. Then
107l = 1+ 527, 0




We say that a bounded operator T on H is invertible if T is a
bijection of H and its inverse is also bounded. The spectrum
of T, denoted by o(T), is the set of complex numbers z for
which T — z/ is not invertible.

Proposition 16 (RCAy)
If T is self-adjoint, then o(T) is a bounded subset of reals.
ACA, implies o(T) is closed.

Proposition 17 (M7-CAy)

Any compact self-adjoint operator T has a sequence

(P, : n € N) of projections and a sequence (r, : n € N) of real
numbers such that P,P,, = 0 for any n # m and

lim, oo rn =0and T, =>._ riP; — T uniformly.

i<n
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