There is no strong minimal pair

LIU Yong
joint work with
Mingzhong Cai, Yiqun Liu, Cheng Peng, Yue Yang
Nanyang Technological University

March 22, 2019

What is an r.e. degree?

- A set A is recursively enumerable (r.e.) if $A=\operatorname{dom} f$ for some partical recursive function f.
- $K=\left\{e \mid \Phi_{e}(e) \downarrow\right\}$ is an example of non-recursive complete r.e. set.
- 1944 Post's Problem: Is there a non-recursive incomplete r.e. degrees?
- 1957,1956 Friedberg-Muchnik Theorem: Yes (By a priority argument).
- 1964 Sacks' Density Theorem: Between any two comparable r.e. degrees, there is a third one. (By another priority argument)

What is a strong minimal pair?

- A, B form a minimal pair if for all $C \leq_{T} A, B, C$ is recursive.

What is a strong minimal pair?

- A, B form a minimal pair if for all $C \leq_{T} A, B, C$ is recursive.
- Given A, B such that they are incomparable.
- Let us consider $S=\left\{B \oplus W \mid \varnothing<_{T} W \leq_{T} A\right\}$
- Obviously, $S \subseteq_{T}[B, B \oplus A]$

What is a strong minimal pair?

- A, B form a minimal pair if for all $C \leq_{T} A, B, C$ is recursive.
- Given A, B such that they are incomparable.
- Let us consider $S=\left\{B \oplus W \mid \varnothing<_{T} W \leq_{T} A\right\}$
- Obviously, $S \subseteq_{T}[B, B \oplus A]$
- $S \subseteq_{T}(B, B \oplus A]$ iff A, B forms a minimal pair.

What is a strong minimal pair?

- A, B form a minimal pair if for all $C \leq_{T} A, B, C$ is recursive.
- Given A, B such that they are incomparable.
- Let us consider $S=\left\{B \oplus W \mid \varnothing<_{T} W \leq_{T} A\right\}$
- Obviously, $S \subseteq_{T}[B, B \oplus A]$
- $S \subseteq_{T}(B, B \oplus A]$ iff A, B forms a minimal pair.
- $S \subseteq{ }_{T}[C, B \oplus A]$ for some $C>_{T} B$ iff A, B, C form a Slaman-triple.

What is a strong minimal pair?

- A, B form a minimal pair if for all $C \leq_{T} A, B, C$ is recursive.
- Given A, B such that they are incomparable.
- Let us consider $S=\left\{B \oplus W \mid \varnothing<_{T} W \leq_{T} A\right\}$
- Obviously, $S \subseteq_{T}[B, B \oplus A]$
- $S \subseteq_{T}(B, B \oplus A]$ iff A, B forms a minimal pair.
- $S \subseteq{ }_{T}[C, B \oplus A]$ for some $C>_{T} B$ iff A, B, C form a Slaman-triple.
- Question: Is there a pair of A, B such that $S \subseteq_{T}[B \oplus A, B \oplus A]$? Such pair is called a strong minimal pair.

What is a strong minimal pair?

- A, B form a minimal pair if for all $C \leq_{T} A, B, C$ is recursive.
- Given A, B such that they are incomparable.
- Let us consider $S=\left\{B \oplus W \mid \varnothing<_{T} W \leq_{T} A\right\}$
- Obviously, $S \subseteq_{T}[B, B \oplus A]$
- $S \subseteq_{T}(B, B \oplus A]$ iff A, B forms a minimal pair.
- $S \subseteq{ }_{T}[C, B \oplus A]$ for some $C>_{T} B$ iff A, B, C form a Slaman-triple.
- Question: Is there a pair of A, B such that $S \subseteq_{T}[B \oplus A, B \oplus A]$? Such pair is called a strong minimal pair.
- Many people claimed it exists.

Theorem
There is no strong minimal pair.

Theorem

There is no strong minimal pair.
Plan: Given any r.e. sets A, B such that $A \not \not{ }_{T} B$, we construct infinitely many r.e. sets among which there is one r.e. set W having the following properties,
(i) $W \leq_{T} A$,
(ii) $\varnothing<T W$,
(iii) $B \oplus W<_{T} B \oplus A$.

Theorem

There is no strong minimal pair.
Plan: Given any r.e. sets A, B such that $A \not \not{ }_{T} B$, we construct infinitely many r.e. sets among which there is one r.e. set W having the following properties,
(i) $W \leq_{T} A$,
(ii) $\varnothing<{ }_{T} W$,
(iii) $B \oplus W<{ }_{T} B \oplus A$.

Requirements:
(i) $G_{W}: W=\Phi^{A}$,
(ii) $P_{W}(\Delta): W \neq \Delta$ for all Δ,
(iii) $N_{W}(\Gamma): A \neq \Gamma^{B \oplus W}$ for all Γ.

$G_{W}, P_{W}(\Delta)$ and $N_{W}(\Gamma)$

All together!

