Online structures

Keng Meng Ng

Nanyang Technological University, Singapore

25 March 2019

Introduction

Motivating questions

- * Study how computation interacts with various mathematical concepts.
- Complexity of constructions and objects we use in mathematics (how to calibrate?)
- * Can formalize this more syntactically (reverse math, etc).
- * Or more model theoretically...

Motivating questions

- * Study how computation interacts with various mathematical concepts.
- Complexity of constructions and objects we use in mathematics (how to calibrate?)
- * Can formalize this more syntactically (reverse math, etc).
- * Or more model theoretically...

- * In computable model / structure theory, can different effective concepts
 - * presentations of a structure,
 - * complexity of isomorphisms within an isomorphism type,
 - * investigations can descend into a more degree-theoretic approach.
- * Classically \mathcal{A} and \mathcal{B} are considered the same if $\mathcal{A} \cong \mathcal{B}$.
- However, from an effective point of view, even if A ≅ B are computable, they may have very different "hidden" effective properties.
- * Standard example: $(\omega, <) \cong \mathcal{A}$ where you arrange for 2nand 2n + 2 to be adjacent in \mathcal{A} iff $n \notin \emptyset'$.

- * In computable model / structure theory, can different effective concepts
 - * presentations of a structure,
 - * complexity of isomorphisms within an isomorphism type,
 - * investigations can descend into a more degree-theoretic approach.
- * Classically \mathcal{A} and \mathcal{B} are considered the same if $\mathcal{A} \cong \mathcal{B}$.
- However, from an effective point of view, even if A ≅ B are computable, they may have very different "hidden" effective properties.
- * Standard example: $(\omega, <) \cong \mathcal{A}$ where you arrange for 2nand 2n + 2 to be adjacent in \mathcal{A} iff $n \notin \emptyset'$.

- * In computable model / structure theory, can different effective concepts
 - * presentations of a structure,
 - * complexity of isomorphisms within an isomorphism type,
 - investigations can descend into a more degree-theoretic approach.
- * Classically \mathcal{A} and \mathcal{B} are considered the same if $\mathcal{A} \cong \mathcal{B}$.
- However, from an effective point of view, even if A ≅ B are computable, they may have very different "hidden" effective properties.
- * Standard example: $(\omega, <) \cong \mathcal{A}$ where you arrange for 2nand 2n + 2 to be adjacent in \mathcal{A} iff $n \notin \emptyset'$.

- * In computable model / structure theory, can different effective concepts
 - * presentations of a structure,
 - * complexity of isomorphisms within an isomorphism type,
 - investigations can descend into a more degree-theoretic approach.
- * Classically \mathcal{A} and \mathcal{B} are considered the same if $\mathcal{A} \cong \mathcal{B}$.
- However, from an effective point of view, even if A ≃ B are computable, they may have very different "hidden" effective properties.
- standard example: (ω, <) ≅ A where you arrange for 2n and 2n + 2 to be adjacent in A iff n ∉ Ø'.

Motivating questions II: Complexity of Isomorphisms

 In the standard example (ω, <) ≅ A, "successivity" was the hidden property. Any isomorphism must transfer all definable properties, so this says that...

Definition

A computable structure \mathcal{A} is computably categorical if for every computable $\mathcal{B} \cong \mathcal{A}$, there is a computable isomorphism between \mathcal{A} and \mathcal{B} .

 Aim of the project: Systematic approach to all these considerations, with even stricter / finer effective restrictions.

Motivating questions II: Complexity of Isomorphisms

 In the standard example (ω, <) ≅ A, "successivity" was the hidden property. Any isomorphism must transfer all definable properties, so this says that...

Definition

A computable structure \mathcal{A} is computably categorical if for every computable $\mathcal{B} \cong \mathcal{A}$, there is a computable isomorphism between \mathcal{A} and \mathcal{B} .

 Aim of the project: Systematic approach to all these considerations, with even stricter / finer effective restrictions.

Definition (Mal'cev, Rabin, 60's)

A structure is computable if it's domain and all operations and relations are uniformly computable.

- * Equivalent variations (allow domain to be computable or c.e.).
- Seen to unify all earlier effective algebraic concepts, e.g. explicitly presented fields, recursively presented group with solvable word problem, etc.
- This has grown since into a large body of research; groups, fields, Boolean algebras, linear orders, model theory, reverse mathematics.

* Our investigation is to place even finer restrictions:

Question

When does a computable structure have a feasible presentation?

- * One obvious way: structure presented by a *finite automaton* (we won't discuss here).
- This talk will be centered around the notion of online computability (1960's).
- * *Online situation*: Input arrives one bit at a time, but decision has to be made instantly.
- * *Offline situation*: Decision made only after seeing the entire (but finite) input.

* Our investigation is to place even finer restrictions:

Question

When does a computable structure have a feasible presentation?

- * One obvious way: structure presented by a *finite automaton* (we won't discuss here).
- This talk will be centered around the notion of online computability (1960's).
- * *Online situation*: Input arrives one bit at a time, but decision has to be made instantly.
- * *Offline situation*: Decision made only after seeing the entire (but finite) input.

* Our investigation is to place even finer restrictions:

Question

When does a computable structure have a feasible presentation?

- * One obvious way: structure presented by a *finite automaton* (we won't discuss here).
- This talk will be centered around the notion of online computability (1960's).
- * *Online situation*: Input arrives one bit at a time, but decision has to be made instantly.
- * *Offline situation*: Decision made only after seeing the entire (but finite) input.

Scheduling problem: Given *k* identical machines, and a sequence of jobs arriving. We must schedule each arrived job immediately without knowledge of future jobs.

Bin packing: Given *k* bins and a sequence of objects of different sizes arriving, pack each item immediately while minimizing number of bins used. Greedy algorithm is good, but not optimal. Decision problem is *NP*-complete.

Ski rental problem: Go skiing for an unknown number of days, each day we must decide to rent or buy the skis. Optimal (deterministic) online strategy: Break even strategy.

Scheduling problem: Given *k* identical machines, and a sequence of jobs arriving. We must schedule each arrived job immediately without knowledge of future jobs.

Bin packing: Given *k* bins and a sequence of objects of different sizes arriving, pack each item immediately while minimizing number of bins used. Greedy algorithm is good, but not optimal. Decision problem is *NP*-complete.

Ski rental problem: Go skiing for an unknown number of days, each day we must decide to rent or buy the skis. Optimal (deterministic) online strategy: Break even strategy.

Secretary problem: Interview a number of candidates for a job, must immediately decide to hire or reject after each interview. Optimal online strategy: Reject the first $\frac{n}{e}$ candidates.

Bandit problem: A gambler at a row of slot machines, decide to continue playing the current machine (exploitation) or try a different machine (exploration). Example of stochastic scheduling, considered by Allied scientists.

Secretary problem: Interview a number of candidates for a job, must immediately decide to hire or reject after each interview. Optimal online strategy: Reject the first $\frac{n}{e}$ candidates.

Bandit problem: A gambler at a row of slot machines, decide to continue playing the current machine (exploitation) or try a different machine (exploration). Example of stochastic scheduling, considered by Allied scientists.

Online graph colouring:

Vertices of a finite (or infinite) graph arrives one at a time, and the induced subgraph is shown to us immediately. A colour has to be assigned immediately, and cannot be changed.

Minimize the number of colours used.

For every k there is a tree with 2^k vertices that cannot be online-coloured in < k colours.

Online graph colouring:

- Vertices of a finite (or infinite) graph arrives one at a time, and the induced subgraph is shown to us immediately. A colour has to be assigned immediately, and cannot be changed.
- Minimize the number of colours used.
- For every *k* there is a tree with 2^k vertices that cannot be online-coloured in < k colours.

Can be 2-coloured offline

Can be 2-coloured offline

Can be 2-coloured offline

What does "online" mean for an infinite structure?

- * In the examples mentioned above, we had to make a decision *immediately*.
- * It is of course, perfectly fine to wait for 100 more steps. But how much more?
- * An obvious formalization: polynomial time structures (Cenzer, Remmel, Downey).
 - This depends on how the domain is represented (as N or 2^{<ω}).
 - * This leads to an entire hierarchy of different notions of being online.

- * In the examples mentioned above, we had to make a decision *immediately*.
- * It is of course, perfectly fine to wait for 100 more steps. But how much more?
- * An obvious formalization: polynomial time structures (Cenzer, Remmel, Downey).
 - This depends on how the domain is represented (as N or 2^{<ω}).
 - * This leads to an entire hierarchy of different notions of being online.

- What is the most general notion of online computability? Obviously, Turing computability is too weak.
- A computable infinite tree has a computable 2-colouring.
 Wait for a node to be connected to the root.
- * The "unbounded search" nature of a general recursive operation is what allows this.
- The general model we adopt for online computation is based on being primitive recursive.

- What is the most general notion of online computability?
 Obviously, Turing computability is too weak.
- A computable infinite tree has a computable 2-colouring.
 Wait for a node to be connected to the root.
- * The "unbounded search" nature of a general recursive operation is what allows this.
- * The general model we adopt for online computation is based on being primitive recursive.

Poly-time versus primitive recursive

- * Again, there's a large body of work (80's) done on polynomial time (mostly) algebras.
- Our starting point is a series of papers of Cenzer, Remmel (and other co-authors), on various classes of "feasible" structures.
- * In computable structures we allow algorithms to be extremely inefficient.
- * Sometimes, every computable structure has a polynomial-time copy:

Linear orders, certain kinds of BAs, some commutative groups.

Poly-time versus primitive recursive

- * Again, there's a large body of work (80's) done on polynomial time (mostly) algebras.
- Our starting point is a series of papers of Cenzer, Remmel (and other co-authors), on various classes of "feasible" structures.
- * In computable structures we allow algorithms to be extremely inefficient.
- Sometimes, every computable structure has a polynomial-time copy:

Linear orders, certain kinds of BAs, some commutative groups.

Poly-time versus primitive recursive

* A problematic version using primitive recursion:

Definition (Mal'cev, Rabin, 60's)

A structure is computable if it's domain and all operations and relations are uniformly computable.

Definition (Cenzer, Remmel)

A structure is primitive recursive if it's domain and all operations and relations are primitive recursive.

- Does not capture online nature: In a primitive recursive structure, new elements can be enumerated very slowly.
- * (Alaev) Every computable locally finite structure has a primitive recursive copy.
Poly-time versus primitive recursive

* A problematic version using primitive recursion:

Definition (Mal'cev, Rabin, 60's)

A structure is computable if it's domain and all operations and relations are uniformly computable.

Definition (Cenzer, Remmel)

A structure is primitive recursive if it's domain and all operations and relations are primitive recursive.

- Does not capture online nature: In a primitive recursive structure, new elements can be enumerated very slowly.
- * (Alaev) Every computable locally finite structure has a primitive recursive copy.

Poly-time versus primitive recursive

* A problematic version using primitive recursion:

Definition (Mal'cev, Rabin, 60's)

A structure is computable if it's domain and all operations and relations are uniformly computable.

Definition (Cenzer, Remmel)

A structure is primitive recursive if it's domain and all operations and relations are primitive recursive.

- * *Does not capture online nature*: In a primitive recursive structure, new elements can be enumerated very slowly.
- * (Alaev) Every computable locally finite structure has a primitive recursive copy.

Capturing online nature of infinite structures

* We want the definition of an "online structure" to have no possible way to delay revealing the structure:

Definition (Kalimullin, Melnikov, N)

A structure is punctual if it has domain \mathbb{N} , and all operations and relations are primitive recursive.

- * Intuition: Punctual structures have to decide right away what to do with the next element.
- * We only consider finite languages.
- * Already used by Cenzer and Remmel as a technical tool.
- * The goal is to initiate a systematic study of punctuality (online) versus computable (offline).

Capturing online nature of infinite structures

* We want the definition of an "online structure" to have no possible way to delay revealing the structure:

Definition (Kalimullin, Melnikov, N)

A structure is punctual if it has domain \mathbb{N} , and all operations and relations are primitive recursive.

- * Intuition: Punctual structures have to decide right away what to do with the next element.
- * We only consider finite languages.
- * Already used by Cenzer and Remmel as a technical tool.
- * The goal is to initiate a systematic study of punctuality (online) versus computable (offline).

Considerations

 We can place effectivity on math structures in several ways. In the same vein, we can ask:

Question (1)

When does a computable structure have a punctual copy?

Question (2)

How many punctual copies does a punctual structure have, up to punctual isomorphisms?

- * We contrast to the computable case; often different, sometimes even unclear.
- * Measures the "online" nature of a computable structure.

Considerations

 We can place effectivity on math structures in several ways. In the same vein, we can ask:

Question (1)

When does a computable structure have a punctual copy?

Question (2)

How many punctual copies does a punctual structure have, up to punctual isomorphisms?

- * We contrast to the computable case; often different, sometimes even unclear.
- * Measures the "online" nature of a computable structure.

Considerations

 We can place effectivity on math structures in several ways. In the same vein, we can ask:

Question (1)

When does a computable structure have a punctual copy?

Question (2)

How many punctual copies does a punctual structure have, up to punctual isomorphisms?

- * We contrast to the computable case; often different, sometimes even unclear.
- * Measures the "online" nature of a computable structure.

Which structure has a punctual presention?

Theorem (Kalimullin, Melnikov, N)

Each computable structure in the following classes has a punctual copy:

- * Equivalence structures,
- linear orders,
- * torsion-free abelian groups,
- * boolean algebras,
- * abelian p-groups.

Proof.

Each of these structures A has an infinite local part $B \subset A$ that is very simple, and trivially related to the elements of A - B. Allows us to simulate arbitrary finite delay.

Theorem (Kalimullin, Melnikov, N)

Each computable structure in the following classes has a punctual copy:

- * Equivalence structures,
- linear orders,
- * torsion-free abelian groups,
- * boolean algebras,
- * abelian p-groups.

Proof.

Each of these structures A has an infinite local part $B \subset A$ that is very simple, and trivially related to the elements of A - B. Allows us to simulate arbitrary finite delay.

 The classes above have a "online" basis of some sort, used for simulating arbitrary finite delay. However, merely having a basis is insufficient for having a punctual copy:

Theorem (Cenzer, Remmel, KMN)

There is a computable torsion abelian group with no punctual copy.

Question

- * Find a reasonable sufficient condition for a computable structure to have a punctual copy.
- * E.g. formalize the notion of a punctual basis.

 The classes above have a "online" basis of some sort, used for simulating arbitrary finite delay. However, merely having a basis is insufficient for having a punctual copy:

Theorem (Cenzer, Remmel, KMN)

There is a computable torsion abelian group with no punctual copy.

Question

- * Find a reasonable sufficient condition for a computable structure to have a punctual copy.
- * E.g. formalize the notion of a punctual basis.

* We turn to pure relational languages.

Fact

Every computable locally finite graph has a punctual copy.

- * Converse is not true, for example the random graph and the infinite star have punctual copies.
- * Perhaps every computable graph has a punctual copy.

Theorem (Kalimullin, Melnikov, N)

There is a computable graph with no punctual copy.

* We turn to pure relational languages.

Fact

Every computable locally finite graph has a punctual copy.

- * Converse is not true, for example the random graph and the infinite star have punctual copies.
- * Perhaps every computable graph has a punctual copy.

Theorem (Kalimullin, Melnikov, N)

There is a computable graph with no punctual copy.

Is there a natural description of which computable structures have punctual copies? Unfortunately,

Theorem (Bazhenov, Harrison-Trainor, Kalimullin, Melnikov, N)

The following index sets are Σ_1^1 -complete:

$\{e: M_e \text{ is computable and has a punctual copy}\}.$

 $\{e: M_e \text{ is computable and has an automatic copy}\}.$

{e : *M_e is computable and has an polynomial-time copy*}.

Is there a natural description of which computable structures have punctual copies? Unfortunately,

Theorem (Bazhenov, Harrison-Trainor, Kalimullin, Melnikov, N)

The following index sets are Σ_1^1 -complete:

 $\{e: M_e \text{ is computable and has a punctual copy}\}.$

 $\{e: M_e \text{ is computable and has an automatic copy}\}.$

 $\{e: M_e \text{ is computable and has an polynomial-time copy}\}.$

The number of punctual

presentations

Punctual categoricity

 Recall that the complexity of a computable structure can be measured by the minimal complexity of isomorphisms between computable copies.

Definition

A punctual structure \mathcal{A} is punctually categorical if for every punctual $\mathcal{B} \cong \mathcal{A}$ there is a punctual isomorphism $f : \mathcal{A} \mapsto \mathcal{B}$.

- * What does a "punctual isomorphism" mean? "f and f^{-1} are both primitive recursive
- * Warning: This is different from saying that " $f : A \mapsto B$ and $g : B \mapsto A$ for some primitive recursive f, g", or saying that "Graph(f) is primitive recursive"..
- * For computable isomorphisms, these are all equivalent.

Punctual categoricity

 Recall that the complexity of a computable structure can be measured by the minimal complexity of isomorphisms between computable copies.

Definition

A punctual structure \mathcal{A} is punctually categorical if for every punctual $\mathcal{B} \cong \mathcal{A}$ there is a punctual isomorphism $f : \mathcal{A} \mapsto \mathcal{B}$.

* What does a "punctual isomorphism" mean?

"*f* and f^{-1} are both primitive recursive."

- * Warning: This is different from saying that " $f : A \mapsto B$ and $g : B \mapsto A$ for some primitive recursive f, g", or saying that "Graph(f) is primitive recursive"..
- * For computable isomorphisms, these are all equivalent.

- The additive group $\bigoplus_{i \in \omega} \mathbb{Z}_p$ is punctually categorical.
 - Given a punctual copy A, some a ∈ A, and some S ⊆ A, it is primitive recursive to check if a is linearly independent over S.

* An online back-and-forth argument works.

- The dense linear order (Q, <) is surprisingly not punctually categorical.</p>
 - * An online back-and-forth argument does not work.
 - * Given p < q an element $r \in (p, q)$ might not arrive quickly.
- (a) The structure (ω , Succ) is also not punctually categorical.
 - * Given an element *n*, its distance to 0 might not be primitive recursive.

- The additive group $\bigoplus_{i \in \omega} \mathbb{Z}_p$ is punctually categorical.
 - Given a punctual copy A, some a ∈ A, and some S ⊆ A, it is primitive recursive to check if a is linearly independent over S.
 - * An online back-and-forth argument works.
- The dense linear order (Q, <) is surprisingly not punctually categorical.</p>
 - * An online back-and-forth argument does not work.
 - * Given p < q an element $r \in (p, q)$ might not arrive quickly.
- 3 The structure (ω , Succ) is also not punctually categorical.
 - * Given an element *n*, its distance to 0 might not be primitive recursive.

- The additive group $\bigoplus_{i \in \omega} \mathbb{Z}_p$ is punctually categorical.
 - * Given a punctual copy A, some $a \in A$, and some $S \subseteq A$, it is primitive recursive to check if a is linearly independent over S.
 - * An online back-and-forth argument works.
- The dense linear order (Q, <) is surprisingly not punctually categorical.</p>
 - * An online back-and-forth argument does not work.
 - * Given p < q an element $r \in (p, q)$ might not arrive quickly.
- **③** The structure (ω , Succ) is also not punctually categorical.
 - * Given an element *n*, its distance to 0 might not be primitive recursive.

Theorem (KMN)

In each of the following classes, a structure is punctually categorical if and only if it is "trivial".

- * Equivalence structures: only classes of size 1, or finitely many classes at most one of which is infinite.
- * Linear orders: finite.
- * Boolean algebras: finite.
- * Abelian p-groups: pG = 0.
- * Torsion-free abelian groups: trivial group {0}.

Punctual categoricity and rigidity

 The examples of punctually categorical structures we've seen so far were far from rigid (⊕Z_p, equivalence structures). What about rigid structures?

Theorem (KMN)

- * There is a rigid functional structure which is not punctually categorical (ω, Succ).
- * There is a rigid functional structure which is punctually categorical.
- * However, rigid relational structures are never punctually categorical.

Comparing punctual and computable categoricity

- * We saw that $(\omega, Succ)$ is an example of a computably categorical but not punctually categorical structure.
- * A very natural conjecture would be that every punctually categorical structure is computably categorical.
- This is true for many natural classes (equivalence structures, linear orders, Boolean algebras, abelian *p*-groups, TFAGs).

Theorem (KMN)

There is a punctually categorical structure which is not computably categorical.

Theorem (In progress)

There is a punctually categorical structure \mathcal{A} where every isomorphism between computable copies of \mathcal{A} compute \emptyset'' .

Comparing punctual and computable categoricity

- * We saw that $(\omega, Succ)$ is an example of a computably categorical but not punctually categorical structure.
- * A very natural conjecture would be that every punctually categorical structure is computably categorical.
- This is true for many natural classes (equivalence structures, linear orders, Boolean algebras, abelian *p*-groups, TFAGs).

Theorem (KMN)

There is a punctually categorical structure which is not computably categorical.

Theorem (In progress)

There is a punctually categorical structure $\mathcal A$ where every isomorphism between computable copies of $\mathcal A$ compute \emptyset'' .

Comparing punctual and computable categoricity

- * We saw that $(\omega, Succ)$ is an example of a computably categorical but not punctually categorical structure.
- * A very natural conjecture would be that every punctually categorical structure is computably categorical.
- This is true for many natural classes (equivalence structures, linear orders, Boolean algebras, abelian *p*-groups, TFAGs).

Theorem (KMN)

There is a punctually categorical structure which is not computably categorical.

Theorem (In progress)

There is a punctually categorical structure A where every isomorphism between computable copies of A compute \emptyset'' .

Graphs and universality

It is well-known that graphs are universal for computable structures.

Theorem (Downey, Harrison-Trainor, Kalimullin, Melnikov, Turetsky)

Graphs are not universal for punctual structures.

Indeed, a graph \mathcal{G} is punctually categorical if and only if there are v_0, \dots, v_n such that $\mathcal{G} - \{v_0, \dots, v_n\}$ is a clique or an anti-clique and each v_i is adjacent to all or none of $\mathcal{G} - \{v_0, \dots, v_n\}$.

Comparing the online content between two punctual structures

Comparing online content

- * If A and B are punctual copies of the same structure, what should $A \leq_{pr} B$ mean?
- * \mathcal{B} has more online content than \mathcal{A} .
- * We say that $\mathcal{A} \leq_{pr} \mathcal{B}$ if there is a primitive recursive isomorphism $f : \mathcal{A} \xrightarrow{onto} \mathcal{B}$.
- * This is merely a preordering (since f^{-1} is not always p.r.)
- * Let **FPR**(A) denote {all punctual copies of A}/ \equiv_{pr} .
- * The standard copy of $(\mathbb{Q}, <)$ is the greatest element of $\mathbf{FPR}(\mathbb{Q}, <)$
- The standard copy of (ℕ, Succ) is the least element of FPR(ℕ, Succ).

Comparing online content

- * If A and B are punctual copies of the same structure, what should $A \leq_{pr} B$ mean?
- * \mathcal{B} has more online content than \mathcal{A} .
- * We say that $\mathcal{A} \leq_{pr} \mathcal{B}$ if there is a primitive recursive isomorphism $f : \mathcal{A} \xrightarrow{onto} \mathcal{B}$.
- * This is merely a preordering (since f^{-1} is not always p.r.)
- * Let **FPR**(A) denote {all punctual copies of A}/ \equiv_{pr} .
- * The standard copy of $(\mathbb{Q}, <)$ is the greatest element of $\textbf{FPR}(\mathbb{Q}, <)$
- The standard copy of (ℕ, Succ) is the least element of FPR(ℕ, Succ).

Comparing online content

- * If A and B are punctual copies of the same structure, what should $A \leq_{pr} B$ mean?
- * \mathcal{B} has more online content than \mathcal{A} .
- * We say that $\mathcal{A} \leq_{pr} \mathcal{B}$ if there is a primitive recursive isomorphism $f : \mathcal{A} \xrightarrow{onto} \mathcal{B}$.
- * This is merely a preordering (since f^{-1} is not always p.r.)
- * Let **FPR**(A) denote {all punctual copies of A}/ \equiv_{pr} .
- * The standard copy of $(\mathbb{Q},<)$ is the greatest element of $\textbf{FPR}(\mathbb{Q},<)$
- The standard copy of (N, Succ) is the least element of FPR(N, Succ).

Online back-and-forth

 If |FPR(A)| = 1 then all punctual copies of A have the same online content. Is this enough to carry out an online back-and-forth argument?

Theorem (Melnikov,N)

A graph \mathcal{G} is punctually categorical if and only if $|\textbf{FPR}(\mathcal{G})| = 1$.

Question Is |FPR(A)| = 1 equivalent to saying that A is punctually categorical?

A degree-theoretic approach

* One could potentially approach this degree-theoretically:

Theorem (In progress)

For every finite n, there is a structure A such that |FPR(A)| = n.

Question

What other partial orders can be realized as FPR(A) for some A? For instance, infinite linear orders? All countable distributive lattices?

Online content of homogeneous structures

- * Consider the following homogeneous structures:
 - $* (\mathbb{Q},<),$
 - * The random graph \mathcal{R} ,
 - * The universal countable abelian *p*-group $\mathcal{P} \cong \bigoplus_{i \in \omega} \mathbb{Z}_{p^{\infty}}$,
 - $\ast~$ The countable atomless Boolean algebra ${\cal B}.$
- In the computable setting, they are all the same, in that they share the same back-and-forth proof, and they are the Fraisse limit of all finite structures.
- * Strangely, their online contents are quite different.

Theorem (Melnikov, N)

FPR(\mathbb{Q} , <), **FPR**(\mathcal{R}) and **FPR**(\mathcal{P}) are pairwise non-isomorphic.

Online content of homogeneous structures

- * Consider the following homogeneous structures:
 - $* (\mathbb{Q},<),$
 - * The random graph \mathcal{R} ,
 - * The universal countable abelian *p*-group $\mathcal{P} \cong \bigoplus_{i \in \omega} \mathbb{Z}_{p^{\infty}}$,
 - $\ast~$ The countable atomless Boolean algebra ${\cal B}.$
- In the computable setting, they are all the same, in that they share the same back-and-forth proof, and they are the Fraisse limit of all finite structures.
- * Strangely, their online contents are quite different.

Theorem (Melnikov, N)

FPR $(\mathbb{Q}, <)$, **FPR** (\mathcal{R}) and **FPR** (\mathcal{P}) are pairwise non-isomorphic.
Question Is $FPR(\mathbb{Q}, <)$ and $FPR(\mathcal{B})$ isomorphic (as partial orders)?

Question

Study the local structure of, say, FPR(Q, <).

* Recall that (ω , *Succ*) is not punctually categorical. The generalization of this is to consider finitely generated structures in a finite functional language.

Question

Is $FPR(\mathbb{Q}, <)$ and $FPR(\mathcal{B})$ isomorphic (as partial orders)?

Question

Study the local structure of, say, $\textbf{FPR}(\mathbb{Q}, <)$.

* Recall that $(\omega, Succ)$ is not punctually categorical. The generalization of this is to consider finitely generated structures in a finite functional language.

Question

Is $FPR(\mathbb{Q}, <)$ and $FPR(\mathcal{B})$ isomorphic (as partial orders)?

Question

Study the local structure of, say, $FPR(\mathbb{Q}, <)$.

* Recall that $(\omega, Succ)$ is not punctually categorical. The generalization of this is to consider finitely generated structures in a finite functional language.

Question

Is $FPR(\mathbb{Q}, <)$ and $FPR(\mathcal{B})$ isomorphic (as partial orders)?

Question

Study the local structure of, say, $FPR(\mathbb{Q}, <)$.

* Recall that $(\omega, Succ)$ is not punctually categorical. The generalization of this is to consider finitely generated structures in a finite functional language.

Questions

- * Connection with definability, Scott sentences. Note: online back-and-forth works differently.
- * How can we define being relatively punctually categorical?
- * Develop online model theory.
- Measure the complexity of the index set {*e* : *M_e* is punctually categorical}.
- More work to be done on relativization, which will lead to investigations like spectra questions, degrees of categoricity, etc.
- * Thank you.

Questions

- * Connection with definability, Scott sentences. Note: online back-and-forth works differently.
- * How can we define being relatively punctually categorical?
- * Develop online model theory.
- Measure the complexity of the index set {*e* : *M_e* is punctually categorical}.
- More work to be done on relativization, which will lead to investigations like spectra questions, degrees of categoricity, etc.
- Thank you.