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Motivating questions

∗ Study how computation interacts with various
mathematical concepts.

∗ Complexity of constructions and objects we use in
mathematics (how to calibrate?)

∗ Can formalize this more syntactically (reverse math, etc).

∗ Or more model theoretically...
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Motivating questions I: Presentations

∗ In computable model / structure theory, can different
effective concepts
∗ presentations of a structure,
∗ complexity of isomorphisms within an isomorphism type,
∗ investigations can descend into a more degree-theoretic

approach.

∗ Classically A and B are considered the same if A ∼= B.

∗ However, from an effective point of view, even if A ∼= B are
computable, they may have very different “hidden" effective
properties.

∗ Standard example: (ω,<) ∼= A where you arrange for 2n
and 2n + 2 to be adjacent in A iff n 6∈ ∅′.
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Motivating questions II: Complexity of Isomorphisms

∗ In the standard example (ω,<) ∼= A, “successivity" was the
hidden property. Any isomorphism must transfer all
definable properties, so this says that...

Definition
A computable structure A is computably categorical if for every
computable B ∼= A, there is a computable isomorphism
between A and B.

∗ Aim of the project: Systematic approach to all these
considerations, with even stricter / finer effective
restrictions.
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Computable structure theory

Definition (Mal’cev, Rabin, 60’s)
A structure is computable if it’s domain and all operations and
relations are uniformly computable.

∗ Equivalent variations (allow domain to be computable or
c.e.).

∗ Seen to unify all earlier effective algebraic concepts, e.g.
explicitly presented fields, recursively presented group with
solvable word problem, etc.

∗ This has grown since into a large body of research;
groups, fields, Boolean algebras, linear orders, model
theory, reverse mathematics.
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Computable structure theory

∗ Our investigation is to place even finer restrictions:

Question
When does a computable structure have a feasible
presentation?

∗ One obvious way: structure presented by a finite
automaton (we won’t discuss here).

∗ This talk will be centered around the notion of online
computability (1960’s).

∗ Online situation: Input arrives one bit at a time, but
decision has to be made instantly.

∗ Offline situation: Decision made only after seeing the
entire (but finite) input.
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Practical online algorithms

Scheduling problem: Given k identical machines, and a
sequence of jobs arriving. We must schedule each arrived
job immediately without knowledge of future jobs.

Bin packing: Given k bins and a sequence of objects of
different sizes arriving, pack each item immediately while
minimizing number of bins used. Greedy algorithm is good,
but not optimal. Decision problem is NP-complete.

Ski rental problem: Go skiing for an unknown number of
days, each day we must decide to rent or buy the skis.
Optimal (deterministic) online strategy: Break even
strategy.
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Practical online algorithms

Secretary problem: Interview a number of candidates for a
job, must immediately decide to hire or reject after each
interview. Optimal online strategy: Reject the first n

e

candidates.

Bandit problem: A gambler at a row of slot machines,
decide to continue playing the current machine
(exploitation) or try a different machine (exploration).
Example of stochastic scheduling, considered by Allied
scientists.
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Practical online algorithms

Online graph colouring:
Vertices of a finite (or infinite) graph arrives one at a time,
and the induced subgraph is shown to us immediately.
A colour has to be assigned immediately, and cannot be
changed.
Minimize the number of colours used.
For every k there is a tree with 2k vertices that cannot be
online-coloured in < k colours.
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No online 2-colouring
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Can be 2-coloured offline
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What does “online” mean

for an infinite structure?
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Capturing online nature of infinite structures

∗ In the examples mentioned above, we had to make a
decision immediately.

∗ It is of course, perfectly fine to wait for 100 more steps. But
how much more?

∗ An obvious formalization: polynomial time structures
(Cenzer, Remmel, Downey).
∗ This depends on how the domain is represented

(as N or 2<ω).
∗ This leads to an entire hierarchy of different notions of

being online.
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Capturing online nature of infinite structures

∗ What is the most general notion of online computability?
Obviously, Turing computability is too weak.

∗ A computable infinite tree has a computable 2-colouring.
Wait for a node to be connected to the root.

∗ The “unbounded search” nature of a general recursive
operation is what allows this.

∗ The general model we adopt for online computation is
based on being primitive recursive.
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Poly-time versus primitive recursive

∗ Again, there’s a large body of work (80’s) done on
polynomial time (mostly) algebras.

∗ Our starting point is a series of papers of Cenzer, Remmel
(and other co-authors), on various classes of “feasible"
structures.

∗ In computable structures we allow algorithms to be
extremely inefficient.

∗ Sometimes, every computable structure has a
polynomial-time copy:

Linear orders, certain kinds of BAs, some commutative
groups.
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Poly-time versus primitive recursive

∗ A problematic version using primitive recursion:

Definition (Mal’cev, Rabin, 60’s)
A structure is computable if it’s domain and all operations and
relations are uniformly computable.

Definition (Cenzer, Remmel)
A structure is primitive recursive if it’s domain and all operations
and relations are primitive recursive.

∗ Does not capture online nature: In a primitive recursive
structure, new elements can be enumerated very slowly.

∗ (Alaev) Every computable locally finite structure has a
primitive recursive copy.

Selwyn Ng Online structures 15 / 33



Poly-time versus primitive recursive

∗ A problematic version using primitive recursion:

Definition (Mal’cev, Rabin, 60’s)
A structure is computable if it’s domain and all operations and
relations are uniformly computable.

Definition (Cenzer, Remmel)
A structure is primitive recursive if it’s domain and all operations
and relations are primitive recursive.

∗ Does not capture online nature: In a primitive recursive
structure, new elements can be enumerated very slowly.

∗ (Alaev) Every computable locally finite structure has a
primitive recursive copy.

Selwyn Ng Online structures 15 / 33



Poly-time versus primitive recursive

∗ A problematic version using primitive recursion:

Definition (Mal’cev, Rabin, 60’s)
A structure is computable if it’s domain and all operations and
relations are uniformly computable.

Definition (Cenzer, Remmel)
A structure is primitive recursive if it’s domain and all operations
and relations are primitive recursive.

∗ Does not capture online nature: In a primitive recursive
structure, new elements can be enumerated very slowly.

∗ (Alaev) Every computable locally finite structure has a
primitive recursive copy.

Selwyn Ng Online structures 15 / 33



Capturing online nature of infinite structures

∗ We want the definition of an “online structure” to have no
possible way to delay revealing the structure:

Definition (Kalimullin, Melnikov, N)
A structure is punctual if it has domain N, and all operations
and relations are primitive recursive.

∗ Intuition: Punctual structures have to decide right away
what to do with the next element.

∗ We only consider finite languages.

∗ Already used by Cenzer and Remmel as a technical tool.

∗ The goal is to initiate a systematic study of punctuality
(online) versus computable (offline).
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Considerations

∗ We can place effectivity on math structures in several
ways. In the same vein, we can ask:

Question (1)
When does a computable structure have a punctual copy?

Question (2)
How many punctual copies does a punctual structure have, up
to punctual isomorphisms?

∗ We contrast to the computable case; often different,
sometimes even unclear.

∗ Measures the “online" nature of a computable structure.
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Which structure has a

punctual presention?
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When does a structure have a punctual copy?
Theorem (Kalimullin, Melnikov, N)
Each computable structure in the following classes has a
punctual copy:

∗ Equivalence structures,

∗ linear orders,

∗ torsion-free abelian groups,

∗ boolean algebras,

∗ abelian p-groups.

Proof.
Each of these structures A has an infinite local part B ⊂ A that
is very simple, and trivially related to the elements of A− B.
Allows us to simulate arbitrary finite delay.
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When does a structure have a punctual copy?

∗ The classes above have a “online" basis of some sort,
used for simulating arbitrary finite delay. However, merely
having a basis is insufficient for having a punctual copy:

Theorem (Cenzer, Remmel, KMN)
There is a computable torsion abelian group with no punctual
copy.

Question
∗ Find a reasonable sufficient condition for a computable structure

to have a punctual copy.

∗ E.g. formalize the notion of a punctual basis.
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When does a structure have a punctual copy?

∗ We turn to pure relational languages.

Fact
Every computable locally finite graph has a punctual copy.

∗ Converse is not true, for example the random graph and
the infinite star have punctual copies.

∗ Perhaps every computable graph has a punctual copy.

Theorem (Kalimullin, Melnikov, N)
There is a computable graph with no punctual copy.
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When does a structure have a punctual copy?

Is there a natural description of which computable structures
have punctual copies? Unfortunately,

Theorem (Bazhenov, Harrison-Trainor, Kalimullin,
Melnikov, N)

The following index sets are Σ1
1-complete:

{e : Me is computable and has a punctual copy}.

{e : Me is computable and has an automatic copy}.

{e : Me is computable and has an polynomial-time copy}.
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The number of punctual

presentations
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Punctual categoricity

∗ Recall that the complexity of a computable structure can
be measured by the minimal complexity of isomorphisms
between computable copies.

Definition
A punctual structure A is punctually categorical if for every
punctual B ∼= A there is a punctual isomorphism f : A 7→ B.

∗ What does a “punctual isomorphism" mean?

“f and f−1 are both primitive recursive."

∗ Warning: This is different from saying that “f : A 7→ B and
g : B 7→ A for some primitive recursive f ,g”, or saying that
“Graph(f ) is primitive recursive"..

∗ For computable isomorphisms, these are all equivalent.
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Punctual categoricity: Examples

1 The additive group
⊕
i∈ω

Zp is punctually categorical.

∗ Given a punctual copy A, some a ∈ A, and some S ⊆ A, it
is primitive recursive to check if a is linearly independent
over S.

∗ An online back-and-forth argument works.
2 The dense linear order (Q, <) is surprisingly not punctually

categorical.
∗ An online back-and-forth argument does not work.
∗ Given p < q an element r ∈ (p,q) might not arrive quickly.

3 The structure (ω,Succ) is also not punctually categorical.
∗ Given an element n, its distance to 0 might not be primitive

recursive.
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Punctual categoricity: Examples

Theorem (KMN)
In each of the following classes, a structure is punctually
categorical if and only if it is “trivial”.

∗ Equivalence structures: only classes of size 1, or finitely
many classes at most one of which is infinite.

∗ Linear orders: finite.

∗ Boolean algebras: finite.

∗ Abelian p-groups: pG = 0.

∗ Torsion-free abelian groups: trivial group {0}.

Selwyn Ng Online structures 24 / 33



Punctual categoricity and rigidity

∗ The examples of punctually categorical structures we’ve
seen so far were far from rigid (⊕Zp, equivalence
structures). What about rigid structures?

Theorem (KMN)

∗ There is a rigid functional structure which is not punctually
categorical (ω,Succ).

∗ There is a rigid functional structure which is punctually
categorical.

∗ However, rigid relational structures are never punctually
categorical.
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Comparing punctual and computable categoricity
∗ We saw that (ω,Succ) is an example of a computably

categorical but not punctually categorical structure.
∗ A very natural conjecture would be that every punctually

categorical structure is computably categorical.
∗ This is true for many natural classes (equivalence

structures, linear orders, Boolean algebras, abelian
p-groups, TFAGs).

Theorem (KMN)
There is a punctually categorical structure which is not
computably categorical.

Theorem (In progress)
There is a punctually categorical structure A where every
isomorphism between computable copies of A compute ∅′′.
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Graphs and universality

It is well-known that graphs are universal for computable
structures.

Theorem (Downey, Harrison-Trainor, Kalimullin, Melnikov,
Turetsky)
Graphs are not universal for punctual structures.
Indeed, a graph G is punctually categorical if and only if there
are v0, · · · , vn such that G − {v0, · · · , vn} is a clique or an
anti-clique and each vi is adjacent to all or none of
G − {v0, · · · , vn}.
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Comparing the online
content between two
punctual structures
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Comparing online content

∗ If A and B are punctual copies of the same structure, what
should A ≤pr B mean?

∗ B has more online content than A.

∗ We say that A ≤pr B if there is a primitive recursive
isomorphism f : A onto−→ B.

∗ This is merely a preordering (since f−1 is not always p.r.)

∗ Let FPR(A) denote {all punctual copies of A}/ ≡pr .

∗ The standard copy of (Q, <) is the greatest element of
FPR(Q, <)

∗ The standard copy of (N,Succ) is the least element of
FPR(N,Succ).
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Online back-and-forth

∗ If |FPR(A)| = 1 then all punctual copies of A have the
same online content. Is this enough to carry out an online
back-and-forth argument?

Theorem (Melnikov,N)
A graph G is punctually categorical if and only if |FPR(G)| = 1.

Question
Is |FPR(A)| = 1 equivalent to saying that A is punctually
categorical?
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A degree-theoretic approach

∗ One could potentially approach this degree-theoretically:

Theorem (In progress)
For every finite n, there is a structure A such that |FPR(A)| = n.

Question
What other partial orders can be realized as FPR(A) for some
A? For instance, infinite linear orders? All countable distributive
lattices?
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Online content of homogeneous structures

∗ Consider the following homogeneous structures:
∗ (Q, <),
∗ The random graph R,
∗ The universal countable abelian p-group P ∼=

⊕
i∈ω Zp∞ ,

∗ The countable atomless Boolean algebra B.

∗ In the computable setting, they are all the same, in that
they share the same back-and-forth proof, and they are the
Fraisse limit of all finite structures.

∗ Strangely, their online contents are quite different.

Theorem (Melnikov, N)
FPR(Q, <), FPR(R) and FPR(P) are pairwise non-isomorphic.
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Finitely generated structures

Question
Is FPR(Q, <) and FPR(B) isomorphic (as partial orders)?

Question
Study the local structure of, say, FPR(Q, <).

∗ Recall that (ω,Succ) is not punctually categorical. The
generalization of this is to consider finitely generated
structures in a finite functional language.

Theorem (Bazhenov, Kalimullin, Melnikov, N)
Suppose A is finitely generated. Then FPR(A) is dense.
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Questions

∗ Connection with definability, Scott sentences. Note: online
back-and-forth works differently.

∗ How can we define being relatively punctually categorical?

∗ Develop online model theory.

∗ Measure the complexity of the index set {e : Me is
punctually categorical}.

∗ More work to be done on relativization, which will lead to
investigations like spectra questions, degrees of
categoricity, etc.

∗ Thank you.
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