Ramsey property and infinite game in second-order arithmetic

Yasuhiko Omata

Mathematical Institute, Tohoku University

CTFM 2019 @ Wuhan University of Technology March 25, 2019

00	Ramsey property 0000000	Determinacy of infinite games	Second-order arithmetic	Ramsey property and determinacy	
Ał	ostract				

This is an introductory talk about *Ramsey property* and *determinacy of infinite games*.

They are both the properties of sets of reals, i.e. subsets of $2^{\mathbb{N}}$ or $\mathbb{N}^{\mathbb{N}}.$

This is ongoing work (in progress) to find the relation between Ramseyness and determinacy within *second-order arithmetic*.

Outline:

- 1 Ramsey property
- 2 Determinacy of infinite games
- **3** Second-order arithmetic
- 4 Ramsey property and determinacy

1 Ramsey property

2 Determinacy of infinite games

3 Second-order arithmetic

4 Ramsey property and determinacy

	Ramsey property 0●00000	Determinacy of infinite games	Second-order arithmetic	Ramsey property and determinacy	
N	otation				

•
$$2 = \{0, 1\}$$

• $2^{<\mathbb{N}} (= 2^*) := \bigcup_{n \in \mathbb{N}} 2^n$
= (the set of finite sequences of 0 and 1)
• $2^{\mathbb{N}} =$ (the set of infinite sequences of 0 and 1)
 $\mathcal{P}(\mathbb{N}) = 2^{\mathbb{N}}$ by identifing $\mathbb{N} \supseteq X = \chi_X \in 2^{\mathbb{N}}$
For $s = (s_0, \dots, s_{n-1}) \in 2^{<\mathbb{N}}$ and $x = (x_0, x_1, \dots) \in 2^{\mathbb{N}}$, write
 $s \subseteq x : \Leftrightarrow \forall i < n(s_i = x_i).$
For $s \in 2^{<\mathbb{N}}$, put
 $[s] = \{x \in 2^{\mathbb{N}} : s \subseteq x\}$

	Ramsey property 0●00000	Determinacy of infinite games	Second-order arithmetic	Ramsey property and determinacy	
N	otation				

•
$$2 = \{0, 1\}$$

• $2^{<\mathbb{N}} (= 2^*) := \bigcup_{n \in \mathbb{N}} 2^n$
= (the set of finite sequences of 0 and 1)
• $2^{\mathbb{N}} =$ (the set of infinite sequences of 0 and 1)
 $\mathcal{P}(\mathbb{N}) = 2^{\mathbb{N}}$ by identifing $\mathbb{N} \supseteq X = \chi_X \in 2^{\mathbb{N}}$
For $s = (s_0, \dots, s_{n-1}) \in 2^{<\mathbb{N}}$ and $x = (x_0, x_1, \dots) \in 2^{\mathbb{N}}$, write
 $s \subseteq x : \Leftrightarrow \forall i < n(s_i = x_i).$
For $s \in 2^{<\mathbb{N}}$, put
 $[s] = \{x \in 2^{\mathbb{N}} : s \subseteq x\}.$

00	000000	0000	00000	000000	
Ra	imsey pro	operty			
	Definition	n (Ramsey j	property)		
	Given $P \subseteq$	${\mathbb Z}2^{\mathbb N}$, we say	that P is Ramsey if eit	her	
	$\exists H \subseteq$	$\prod_{i=1}^{n} \mathbb{N} \ \forall X \subseteq H$	$(X \in P)$ or $\exists H \subseteq \mathbb{N}$	$\forall X \subseteq H \ (X \notin P)$	
	holds.				
	$P=2^{\mathbb{N}}$ is	Ramsey.			
	∵) Let <i>H</i>	$= \mathbb{N}$. Then	$\forall X \subseteq H \ (X \in P).$		
	P = [(1)] =	$= \{ X \subseteq \mathbb{N} :$	$0 \in X$ } is Ramsey.		
	∵) Let H	$= \mathbb{N} \setminus \{0\} :$	= { 1, 2, 3, }. Then ∀	$X \subseteq H \ (X \notin P).$	
	On the ot	her hand,			
	Axiom of	Choice impl	ies " $\exists P \ (P \text{ is not Rams})$	sey)."	
	However,	we can say	P is Ramsey when P is	simple enough.	

Ramsey property

00	Ramsey property 00●0000	Determinacy of infinite games	Second-order arithmetic	Ramsey property and determinacy	
Ra	amsey pro	perty			
	Definition	(Ramsey property)			
	Given $P \subseteq$	$2^{\mathbb{N}}$, we say that P is	<i>Ramsey</i> if eithe	r	
	$\exists H \subseteq \\ \inf_{inf}$	$\mathbb{N} \ \forall X \subseteq H \ (X \in P)$	or $\exists H \subseteq \mathbb{N} \forall$.	$X \subseteq H \ (X \notin P)$	
	$P = 2^{\mathbb{N}}$ is f	Ramsey.			

 \therefore) Let $H = \mathbb{N}$. Then $\forall X \subseteq H \ (X \in P)$.

 $P = [(1)] = \{ X \subseteq \mathbb{N} : 0 \in X \} \text{ is Ramsey.}$

$$\therefore$$
) Let $H = \mathbb{N} \setminus \{0\} = \{1, 2, 3, \dots\}$. Then $\forall X \subseteq H \ (X \notin P)$.

On the other hand,

Axiom of Choice implies " $\exists P \ (P \text{ is not Ramsey})$."

However, we can say P is Ramsey when P is simple enough.

	Ramsey property 00●0000	Determinacy of infinite games	Second-order arithmetic	Ramsey property and determinacy
Ra	msey pro	perty		
	Definition	(Ramsey property)		
	Given $P \subseteq$	$2^{\mathbb{N}}$, we say that P is	Ramsey if either	r
	$\exists H \subseteq \inf_{\inf}$	$\mathbb{N} \ \forall X \subseteq H \ (X \in P)$	or $\exists H \subseteq \mathbb{N} \forall I$ inf.	$X \subseteq H \ (X \notin P)$
	$P=2^{\mathbb{N}}$ is F	Ramsey.		
	∵) Let <i>H</i> =	= \mathbb{N} . Then $\forall X \subseteq H$ ($X \in P$).	

 $P = [(1)] = \{ X \subseteq \mathbb{N} : 0 \in X \}$ is Ramsey.

∵) Let
$$H = \mathbb{N} \setminus \{0\} = \{1, 2, 3, ...\}$$
. Then $\forall X \subseteq H (X \notin P)$.

On the other hand,

Axiom of Choice implies " $\exists P (P \text{ is not Ramsey})$."

However, we can say P is Ramsey when P is simple enough.

	Ramsey property 000●000	Determinacy of infinite games	Second-order arithmetic	Ramsey property and determinacy	
М	otivation				

For a set S,

$$[S]^n := \{ s \subseteq S : |s| = n \}$$

(the set of unordered n-tuples in S).

The infinite Ramsey theorem for *n*-tuples and 2-colors states that $\forall C \colon [\mathbb{N}]^n \to 2 \exists H \subseteq \mathbb{N} \ (\forall x \in [H]^n \ C(x) = 0 \text{ or } \forall x \in [H]^n \ C(x) = 1),$

while "every $P \subseteq 2^{\mathbb{N}}$ is Ramsey" is almost the same assertion as $\forall P : [\mathbb{N}]^{\infty} \to 2 \exists H \subseteq \mathbb{N} \ (\forall X \in [H]^{\infty} \ P(X) = 0 \text{ or } \forall X \in [H]^{\infty} \ P(X) = 1).$

	Ramsey property 000●000	Determinacy of infinite games	Second-order arithmetic	Ramsey property and determinacy	
М	otivation				

For a set S,

$$[S]^{n} := \{ s \subseteq S : |s| = n \}$$

(the set of unordered *n*-tuples in *S*).

The *infinite Ramsey theorem* for *n*-tuples and 2-colors states that $\forall C : [\mathbb{N}]^n \to 2 \exists H \subseteq \mathbb{N} \ (\forall x \in [H]^n \ C(x) = 0 \text{ or } \forall x \in [H]^n \ C(x) = 1),$

while "every $P \subseteq 2^{\mathbb{N}}$ is Ramsey" is almost the same assertion as $\forall P \colon [\mathbb{N}]^{\infty} \to 2 \exists H \subseteq \mathbb{N} \ (\forall X \in [H]^{\infty} \ P(X) = 0 \text{ or } \forall X \in [H]^{\infty} \ P(X) = 1).$

	Ramsey property 000●000	Determinacy of infinite games	Second-order arithmetic	Ramsey property and determinacy	
М	otivation				

For a set S,

$$[S]^n := \{ s \subseteq S : |s| = n \}$$

(the set of unordered *n*-tuples in *S*).

The *infinite Ramsey theorem* for *n*-tuples and 2-colors states that $\forall C \colon [\mathbb{N}]^n \to 2 \exists H \subseteq \mathbb{N} \ (\forall x \in [H]^n \ C(x) = 0 \text{ or } \forall x \in [H]^n \ C(x) = 1),$

while "every $P \subseteq 2^{\mathbb{N}}$ is Ramsey" is almost the same assertion as $\forall P \colon [\mathbb{N}]^{\infty} \to 2 \exists H \subseteq \mathbb{N} \ (\forall X \in [H]^{\infty} \ P(X) = 0 \text{ or } \forall X \in [H]^{\infty} \ P(X) = 1).$ Ramsey property
occooDeterminacy of infinite games
occooSecond-order arithmetic
occooRamsey property and determinacy
occooRamsey property (cont.)Definition (Ramsey property)
Given $P \subseteq 2^{\mathbb{N}}$, we say that P is Ramsey if either
 $\exists H \subseteq \mathbb{N} \ \forall X \subseteq H \ (X \in P)$ or $\exists H \subseteq \mathbb{N} \ \forall X \subseteq H \ (X \notin P)$
inf.holds.

 $P = 2^{\mathbb{N}}$ is Ramsey.

$$\therefore$$
) Let $H = \mathbb{N}$. Then $\forall X \subseteq H \ (X \in P)$.

 $P = [(1)] = \{ X \subseteq \mathbb{N} : 0 \in X \}$ is Ramsey.

$$\therefore) \text{ Let } H = \mathbb{N} \setminus \{0\} = \{1, 2, 3, \dots\}. \text{ Then } \forall X \subseteq H \ (X \notin P).$$

On the other hand,

Axiom of Choice implies "∃P (P is not Ramsey)."

However, we can say P is Ramsey when P is simple enough

Y. Omata (Tohoku U.)

Ramsey property and infinite game in second-order arithmetic

 Ramsey property 0000
 Determinacy of infinite games 0000
 Second-order arithmetic 00000
 Ramsey property and determinacy 000000

 Ramsey property
 Cont.)

 Definition (Ramsey property)

 Given $P \subseteq 2^{\mathbb{N}}$, we say that P is Ramsey if either $\exists H \subseteq \mathbb{N} \ \forall X \subseteq H \ (X \in P)$ or $\exists H \subseteq \mathbb{N} \ \forall X \subseteq H \ (X \notin P)$ inf.

 holds.

 $P = 2^{\mathbb{N}}$ is Ramsey.

$$\therefore$$
) Let $H = \mathbb{N}$. Then $\forall X \subseteq H \ (X \in P)$.

 $P = [(1)] = \{ X \subseteq \mathbb{N} : 0 \in X \}$ is Ramsey.

∴) Let
$$H = \mathbb{N} \setminus \{0\} = \{1, 2, 3, ...\}$$
. Then $\forall X \subseteq H \ (X \notin P)$.

On the other hand,

Axiom of Choice implies " $\exists P \ (P \text{ is not Ramsey})$."

However, we can sav *P* is Ramsey when *P* is simple enough. Y. Omata (Tohoku U.) Ramsey property and infinite game in second-order arithmetic

Open sets are Ramsey

Introduce the topology over $2^{\mathbb{N}}$ by taking $\{ [s] : s \in 2^{<\mathbb{N}} \}$ as open basis.

(This is the same topology as the product topology $2^{\mathbb{N}}$ where each 2 is discrete.)

The topological space $2^{\mathbb{N}}$ with this topology is called *Cantor space*.

Theorem

```
Every open set P \subseteq 2^{\mathbb{N}} is Ramsey.
```

Proof: Later.

Every open(Σ₁⁰) set is Ramsey.

- Every Borel(Δ_1^1) set is Ramsey. [Galvin–Prikry '73]
- Every analytic(Σ_1^1) set is Ramsey. [Silver '70]
- Δ_2^1 -Ramseyness is independent of ZFC.
 - Existence of a measurable cardinal implies Σ_2^1 -Ramseyness.
 - V = L implies $\neg(\Delta_2^1$ -Ramseyness).
- There is $P \subseteq 2^{\mathbb{N}}$ which is not Ramsey. (Uses Axiom of Choice)

- Every open(Σ₁⁰) set is Ramsey.
- Every Borel(Δ¹₁) set is Ramsey. [Galvin–Prikry '73]
- Every analytic(Σ_1^1) set is Ramsey. [Silver '70]

• Δ_2^1 -Ramseyness is independent of ZFC.

Existence of a measurable cardinal implies Σ_2^1 -Ramseyness.

- V = L implies $\neg(\Delta_2^1 \text{Ramseyness})$.
- There is $P \subseteq 2^{\mathbb{N}}$ which is not Ramsey. (Uses Axiom of Choice)

- Every open(Σ₁⁰) set is Ramsey.
- Every Borel(Δ¹₁) set is Ramsey. [Galvin–Prikry '73]
- Every analytic(Σ_1^1) set is Ramsey. [Silver '70]

Δ¹₂-Ramseyness is independent of ZFC.
 Existence of a measurable cardinal implies Σ¹₂-Ramseyness.
 V = L implies ¬(Δ¹₂-Ramseyness).

• There is $P \subseteq 2^{\mathbb{N}}$ which is not Ramsey. (Uses Axiom of Choice)

- Every open(Σ₁⁰) set is Ramsey.
- Every Borel(Δ¹₁) set is Ramsey. [Galvin–Prikry '73]
- Every analytic(Σ_1^1) set is Ramsey. [Silver '70]
- Δ_2^1 -Ramseyness is independent of ZFC.
 - Existence of a measurable cardinal implies Σ_2^1 -Ramseyness.
 - V = L implies $\neg(\Delta_2^1 \text{Ramseyness})$.
- There is $P \subseteq 2^{\mathbb{N}}$ which is not Ramsey. (Uses Axiom of Choice)

1 Ramsey property

2 Determinacy of infinite games

3 Second-order arithmetic

4 Ramsey property and determinacy

Given $G \subseteq \mathbb{N}^{\mathbb{N}}$, consider the following *infinite game*:

The player I wins this game if $x \in G$; the player II wins if $x \notin G$.

A strategy for I (II resp.) is a function such that, for each step, input is every II (I)'s choice, output is a unique I (II)'s choice.

A strategy σ for I (II) is *winning*, if I (II) always wins no matter how II (I) plays, whenever I (II) follows σ .

 $G \subseteq \mathbb{N}^{\mathbb{N}}$ is *determined* if either I or II has a winning strategy in this game.

Axiom of Choice implies " $\exists G \ (G \text{ is not determined})$."

1

Infinite game

Given $G \subseteq \mathbb{N}^{\mathbb{N}}$, consider the following *infinite game*:

The player I wins this game if $x \in G$; the player II wins if $x \notin G$.

A *strategy* for I (II resp.) is a function such that, for each step, input is every II (I)'s choice, output is a unique I (II)'s choice.

A strategy σ for I (II) is *winning*, if I (II) always wins no matter how II (I) plays, whenever I (II) follows σ .

 $G \subseteq \mathbb{N}^{\mathbb{N}}$ is *determined* if either I or II has a winning strategy in this game.

Axiom of Choice implies " $\exists G (G \text{ is not determined})."$

Infinite game

Given $G \subseteq \mathbb{N}^{\mathbb{N}}$, consider the following *infinite game*:

The player I wins this game if $x \in G$; the player II wins if $x \notin G$.

A *strategy* for I (II resp.) is a function such that, for each step, input is every II (I)'s choice, output is a unique I (II)'s choice.

A strategy σ for I (II) is *winning*, if I (II) always wins no matter how II (I) plays, whenever I (II) follows σ .

 $G\subseteq \mathbb{N}^{\mathbb{N}}$ is determined if either I or II has a winning strategy in this game.

Axiom of Choice implies " $\exists G \ (G \text{ is not determined})$."

Open games are determined

Theorem

Every open game (i.e. game where $G \subseteq \mathbb{N}^{\mathbb{N}}$ is open) is determined.

Proof.

Assume G is open and the player I does not have a winning strategy.

Then we can see that, for every play a_0 by I, there exists a play a_1 by II, such that I does not have a winning strategy after that. Then, after that, for every play a_2 by I, there exists a play a_3 by II, such that I does not have a winning strategy after that. This procedure gives a strategy for II, and since G is open this strategy is winning.

Determinacy on each class

" Γ game" is a game of which winning set is $\Gamma.$

- Every open (Σ_1^0) game is determined. [Gale–Stewart '53]
- Every Borel(Δ₁¹) game is determined. (Needs Powerset × ℵ₁ times) [Martin '75]
- Σ_1^1 -determinacy is independent of ZFC.
 - If ∀x∃x[#] then every Σ₁¹ game is determined. [Martin, Harrington]
 - If V = L then there is a Σ_1^1 game which is not determined.
- There is a game which is not determined. (Uses AC) [Gale–Stewart '53]

Determinacy on each class

" Γ game" is a game of which winning set is $\Gamma.$

- Every open (Σ_1^0) game is determined. [Gale–Stewart '53]
- Every Borel(Δ₁¹) game is determined. (Needs Powerset × ℵ₁ times) [Martin '75]
- Σ_1^1 -determinacy is independent of ZFC.
 - If ∀x∃x[#] then every Σ₁¹ game is determined. [Martin, Harrington]
 - If V = L then there is a Σ_1^1 game which is not determined.
- There is a game which is not determined. (Uses AC) [Gale–Stewart '53]

Determinacy on each class

" Γ game" is a game of which winning set is $\Gamma.$

- Every open(Σ₁⁰) game is determined. [Gale–Stewart '53]
- Every Borel(Δ₁¹) game is determined. (Needs Powerset × ℵ₁ times) [Martin '75]
- Σ_1^1 -determinacy is independent of ZFC.
 - If ∀x∃x[‡] then every Σ₁¹ game is determined. [Martin, Harrington]
 - If V = L then there is a Σ_1^1 game which is not determined.
- There is a game which is not determined. (Uses AC) [Gale–Stewart '53]

1 Ramsey property

2 Determinacy of infinite games

3 Second-order arithmetic

4 Ramsey property and determinacy

Reverse Mathematics

Second-order arithmetic is the system which treats natural numbers and sets of natural numbers.

An axiom system of second-order arithmetic (*subsystem of second-order arithmetic*) typically consists of:

- Basic axioms of arithmetic (e.g. x + y = y + x)
- Induction scheme
- Set existence axiom (e.g. "every computable set exists.")

Reverse Mathematics is a program to find, given a theorem φ of mathematics, the smallest axiom which proves φ in second-order arithmetic.

E.g. the Bolzano–Weierstraß theorem (every bounded monotone sequence of real numbers converges) is equivalent to ACA₀ over RCA₀. RCA₀ < WKL₀ < ACA₀ < ATR₀ < Π_1^1 -CA₀ (Big Five) < Π_1^1 -TR₀ < Σ_1^1 -ID₀ < Π_2^1 -CA₀ < ... < Z₂

Reverse Mathematics

Second-order arithmetic is the system which treats natural numbers and sets of natural numbers.

An axiom system of second-order arithmetic (*subsystem of second-order arithmetic*) typically consists of:

- Basic axioms of arithmetic (e.g. x + y = y + x)
- Induction scheme
- Set existence axiom (e.g. "every computable set exists.")

Reverse Mathematics is a program to find, given a theorem φ of mathematics, the smallest axiom which proves φ in second-order arithmetic.

E.g. the Bolzano–Weierstraß theorem (every bounded monotone sequence of real numbers converges) is equivalent to ACA₀ over RCA₀. RCA₀ < WKL₀ < ACA₀ < ATR₀ < Π_1^1 -CA₀ (Big Five) < Π_1^1 -TR₀ < Σ_1^1 -ID₀ < Π_2^1 -CA₀ < ... < Z₂

Ramseyness in second-order arithmetic

Theorem (RCA_0)

- ATR₀ $\Leftrightarrow \Delta_1^0$ -Ram $\Leftrightarrow \Sigma_1^0$ -Ram. [Friedman–McAloon–Simpson '82]
- $\blacksquare \Pi_1^1\text{-}\mathsf{CA}_0 \Leftrightarrow \Delta_2^0\text{-}\mathrm{Ram} \Leftrightarrow \Sigma_\infty^0\text{-}\mathrm{Ram}. \ [\mathsf{Simpson}, \ \mathsf{Solovay}]$
- Π_1^1 -TR₀ $\Leftrightarrow \Delta_1^1$ -Ram. [Tanaka '89]
- Σ_1^1 -ID₀ $\Leftrightarrow \Sigma_1^1$ -Ram. [Tanaka '89]

ATR_0	\leftrightarrow	Σ_1^0 -Ram
Π^1_1 -CA $_0$	\leftrightarrow	Δ_2^0 -Ram
Π^1_1 -TR $_0$	\leftrightarrow	Δ_1^1 -Ram
Σ_1^1 -ID $_0$	\leftrightarrow	Σ_1^1 -Ram
ZFC	\nvdash	Δ_2^1 -Ram

Determinacy in second-order arithmetic

Theorem (RCA_0)

•
$$\mathsf{ATR}_0 \Leftrightarrow \Delta_1^0 \operatorname{-Det} \Leftrightarrow \Sigma_1^0 \operatorname{-Det}$$
. [Steel '78]

•
$$\Pi_1^1$$
-CA₀ \Leftrightarrow $(\Sigma_1^0 \wedge \Pi_1^0)$ -Det. [Tanaka '90]

•
$$\Pi_1^1$$
-TR₀ $\Leftrightarrow \Delta_2^0$ -Det. [Tanaka '91]

•
$$\Sigma_1^1$$
-ID₀ $\Leftrightarrow \Sigma_2^0$ -Det. [Tanaka '91]

■
$$[\Sigma_1^1]^{\mathsf{TR}}$$
- $\mathsf{ID}_0 \Leftrightarrow \Delta_3^0$ - Det (over Π_3^1 - TI_0). [MedSalem–Tanaka '08]

•
$$\Pi_3^1$$
-CA $_0 \Rightarrow \Sigma_3^0$ -Det. [Welch '09]

(Note: Determinacy here is the determinacy of games over \mathbb{N} .)

Second-order arithmetic

Ramsey property and determinacy 000000

Ramseyness and determinacy

1 Ramsey property

- 2 Determinacy of infinite games
- 3 Second-order arithmetic

4 Ramsey property and determinacy

Determinacy implies Ramsey property (1)

Theorem (Kastanas) (ZF + DC)

Let Γ be a class of subsets of $\mathbb{N}^{\mathbb{N}}$ (e.g. $\Sigma_1^0,$ $\Sigma_1^1,$ etc.). Then,

"the determinacy of Γ -games over reals"

implies "the Ramsey property for sets of reals in Γ ."

(Corollary: Every open set is Ramsey.)

This is proved by constructing certain game whose winning strategy implies Ramsey property (next 2 slides).

Γ -determinacy over reals $\Rightarrow \Gamma$ -Ramseyness

Given $P \subseteq 2^{\mathbb{N}}$ in Γ , consider the following game:

I
$$A_0$$
 A_1 \cdots II (n_0, B_0) (n_1, B_1) \cdots

where $\mathbb{N} \supseteq A_i \supseteq B_i \supseteq A_{i+1}$: infinite, $n_i \in A_i$, $n_i < \min B_i$.

I wins if $\{n_0, n_1, \dots\} \in P$. This is a Γ -game.

Lemma

I has a winning strategy ⇒ ∃H ⊆ ℕ ∀X ⊆ H (X ∈ P).
 II has a winning strategy ⇒ ∃H ⊆ ℕ ∀X ⊆ H (X ∉ P).

realized as II's play.

Y. Omata (Tohoku U.)

Ramsey property and infinite game in second-order arithmetic

Ramsey property and infinite game in second-order arithmetic

Determinacy implies Ramsey property (2)

Theorem (Kastanas) (ZF + DC)

Let Γ be a class of subsets of $\mathbb{N}^{\mathbb{N}}$ (e.g. Σ_1^0 , Σ_1^1 , etc.). Then,

"the determinacy of Γ -games over reals"

implies

"the Ramsey property for sets of reals in Γ ."

Theorem (Tanaka) (ZF + DC)

The determinacy of Σ₂⁰-games over reals ⇒ Σ₁¹-Ramseyness.
 The determinacy of Σ_n¹-games over reals ⇒ Σ_{n+1}¹-Ramseyness.

Determinacy implies Ramsey property (2)

Theorem (Kastanas) (ZF + DC)

Let Γ be a class of subsets of $\mathbb{N}^{\mathbb{N}}$ (e.g. Σ_1^0 , Σ_1^1 , etc.). Then,

"the determinacy of Γ -games over reals"

implies

"the Ramsey property for sets of reals in Γ ."

Theorem (Tanaka) (ZF + DC)

- The determinacy of Σ_2^0 -games over reals $\Rightarrow \Sigma_1^1$ -Ramseyness.
- The determinacy of Σ_n^1 -games over reals $\Rightarrow \Sigma_{n+1}^1$ -Ramseyness.

Second-order arithmeti

Ramsey property and determinacy $\circ\circ\circ\circ\circ\circ$

Summary and Question

Conjecture

For all $n \in \omega$,

$$\mathsf{RCA}_0? \vdash \Sigma^1_n\text{-}\mathrm{Det} \to \Sigma^1_{n+1}\text{-}\mathrm{Ram}.$$

Y. Omata (Tohoku U.)

Thank you very much.

Ilias G. Kastanas.

On the Ramsey property for the sets of reals.

Journal of Symbolic Logic, 48:1035–1045, 1983.

Kazuyuki Tanaka.

A game-theoretic proof of analytic Ramsey theorem.

Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 38:301–304, 1992.

Kazuyuki Tanaka.

The Galvin–Prikry theorem and set existence axioms.

Annals of Pure and Applied Logic, 42:81–104, 1989.

Stephen G. Simpson.

Subsystems of Second Order Arithmetic.

Perspectives in Logic. Cambridge University Press, 2009.