Ramsey property and infinite game in second-order arithmetic

Yasuhiko Omata

Mathematical Institute, Tohoku University

CTFM 2019 @ Wuhan University of Technology March 25, 2019

Abstract

This is an introductory talk about Ramsey property and determinacy of infinite games.
They are both the properties of sets of reals, i.e. subsets of $2^{\mathbb{N}}$ or $\mathbb{N}^{\mathbb{N}}$.

This is ongoing work (in progress) to find the relation between Ramseyness and determinacy within second-order arithmetic.

Outline:
1 Ramsey property
2 Determinacy of infinite games
3 Second-order arithmetic
4 Ramsey property and determinacy

1 Ramsey property

2 Determinacy of infinite games

3 Second-order arithmetic

4 Ramsey property and determinacy

Notation

- $2=\{0,1\}$
- $2^{<\mathbb{N}}\left(=2^{*}\right):=\bigcup_{n \in \mathbb{N}} 2^{n}$
$=($ the set of finite sequences of 0 and 1$)$
- $2^{\mathbb{N}}=($ the set of infinite sequences of 0 and 1$)$
$\mathcal{P}(\mathbb{N})=2^{\mathbb{N}}$ by identifing $\mathbb{N} \supseteq X=\chi_{X} \in 2^{\mathbb{N}}$
For $s=\left(s_{0}, \ldots, s_{n-1}\right) \in 2^{<\mathbb{N}}$ and $x=\left(x_{0}, x_{1}, \ldots\right) \in 2^{\mathbb{N}}$, write

$$
s \subseteq x: \Leftrightarrow \forall i<n\left(s_{i}=x_{i}\right) .
$$

For $s \in 2^{<\mathbb{N}}$, put

$$
[s]=\left\{x \in 2^{\mathbb{N}}: s \subseteq x\right\} .
$$

Notation

■ $2=\{0,1\}$

- $2^{<\mathbb{N}}\left(=2^{*}\right):=\bigcup_{n \in \mathbb{N}} 2^{n}$
$=($ the set of finite sequences of 0 and 1$)$
- $2^{\mathbb{N}}=($ the set of infinite sequences of 0 and 1$)$
$\mathcal{P}(\mathbb{N})=2^{\mathbb{N}}$ by identifing $\mathbb{N} \supseteq X=\chi_{X} \in 2^{\mathbb{N}}$
For $s=\left(s_{0}, \ldots, s_{n-1}\right) \in 2^{<\mathbb{N}}$ and $x=\left(x_{0}, x_{1}, \ldots\right) \in 2^{\mathbb{N}}$, write

$$
s \subseteq x: \Leftrightarrow \forall i<n\left(s_{i}=x_{i}\right) .
$$

For $s \in 2^{<\mathbb{N}}$, put

$$
[s]=\left\{x \in 2^{\mathbb{N}}: s \subseteq x\right\}
$$

Ramsey property

Definition (Ramsey property)

Given $P \subseteq 2^{\mathbb{N}}$, we say that P is Ramsey if either

$$
\exists H \underset{\text { inf. }}{\subseteq} \mathbb{N} \forall X \underset{\text { inf. }}{\subseteq} H(X \in P) \quad \text { or } \quad \exists H \underset{\text { inf. }}{\subseteq} \mathbb{N} \forall X \underset{\text { inf. }}{\subseteq} H(X \notin P)
$$

holds.
$P=2^{\mathbb{N}}$ is Ramsey.
$\because)$ Let $H=\mathbb{N}$. Then $\forall X \underset{\text { inf. }}{\subseteq} H(X \in P)$.
$P=[(1)]=\{X \subseteq \mathbb{N}: 0 \in X\}$ is Ramsey.
$\because)$ Let $H=\mathbb{N} \backslash\{0\}=\{1,2,3, \ldots\}$. Then $\forall X \underset{\text { inf. }}{\subseteq} H(X \notin P)$.
On the other hand,
Axiom of Choice implies " $\exists P$ (P is not Ramsey)."
However, we can say P is Ramsey when P is simple enough.

Ramsey property

Definition (Ramsey property)

Given $P \subseteq 2^{\mathbb{N}}$, we say that P is Ramsey if either

$$
\exists H \underset{\text { inf. }}{\subseteq} \mathbb{N} \forall X \underset{\text { inf. }}{\subseteq} H(X \in P) \quad \text { or } \quad \exists H \underset{\text { inf. }}{\subseteq} \mathbb{N} \forall X \underset{\text { inf. }}{\subseteq} H(X \notin P)
$$

holds.
$P=2^{\mathbb{N}}$ is Ramsey.
$\because)$ Let $H=\mathbb{N}$. Then $\forall X \underset{\text { inf. }}{\subseteq} H(X \in P)$.
$P=[(1)]=\{X \subseteq \mathbb{N}: 0 \in X\}$ is Ramsey.
$\because)$ Let $H=\mathbb{N} \backslash\{0\}=\{1,2,3, \ldots\}$. Then $\forall X \underset{\text { inf. }}{\subseteq} H(X \notin P)$.
On the other hand,
Axiom of Choice implies " $\exists P$ (P is not Ramsey)."
However, we can say P is Ramsey when P is simple enough.

Ramsey property

Definition (Ramsey property)

Given $P \subseteq 2^{\mathbb{N}}$, we say that P is Ramsey if either

$$
\exists H \underset{\text { inf. }}{\subseteq} \mathbb{N} \forall X \underset{\text { inf. }}{\subseteq} H(X \in P) \quad \text { or } \quad \exists H \underset{\text { inf. }}{\subseteq} \mathbb{N} \forall X \underset{\text { inf. }}{\subseteq} H(X \notin P)
$$

holds.
$P=2^{\mathbb{N}}$ is Ramsey.
$\because)$ Let $H=\mathbb{N}$. Then $\forall X \underset{\text { inf. }}{\subseteq} H(X \in P)$.
$P=[(1)]=\{X \subseteq \mathbb{N}: 0 \in X\}$ is Ramsey.
$\because)$ Let $H=\mathbb{N} \backslash\{0\}=\{1,2,3, \ldots\}$. Then $\forall X \underset{\text { inf. }}{\subseteq} H(X \notin P)$. On the other hand, Axiom of Choice implies " $\exists P$ (P is not Ramsey)."

However, we can say P is Ramsey when P is simple enough.

Motivation

For a set S,

$$
[S]^{n}:=\{s \subseteq S:|s|=n\}
$$

(the set of unordered n-tuples in S).
The infinite Ramsey theorem for n-tuples and 2 -colors states that $\forall C:[\mathbb{N}]^{n} \rightarrow 2 \exists H \underset{\text { inf. }}{\subseteq} \mathbb{N}\left(\forall x \in[H]^{n} C(x)=0\right.$ or $\left.\forall x \in[H]^{n} C(x)=1\right)$,
while "every $P \subseteq 2^{\mathbb{N}}$ is Ramsey" is almost the same assertion as $\forall P:[\mathbb{N}]^{\infty} \rightarrow 2 \exists H \subset \mathbb{N}\left(\forall X \in[H]^{\infty} P(X)=0\right.$ or $\left.\forall X \in[H]^{\infty} P(X)=1\right)$.

Motivation

For a set S,

$$
[S]^{n}:=\{s \subseteq S:|s|=n\}
$$

(the set of unordered n-tuples in S).
The infinite Ramsey theorem for n-tuples and 2-colors states that $\forall C:[\mathbb{N}]^{n} \rightarrow 2 \exists H \underset{\text { inf. }}{\subseteq} \mathbb{N}\left(\forall x \in[H]^{n} C(x)=0\right.$ or $\left.\forall x \in[H]^{n} C(x)=1\right)$,
while "every $P \subseteq 2^{\mathbb{N}}$ is Ramsey" is almost the same assertion as $\forall P:[\mathbb{N}]^{\infty} \rightarrow 2 \exists H \subset \mathbb{N}\left(\forall X \in[H]^{\infty} P(X)=0\right.$ or $\left.\forall X \in[H]^{\infty} P(X)=1\right)$.

Motivation

For a set S,

$$
[S]^{n}:=\{s \subseteq S:|s|=n\}
$$

(the set of unordered n-tuples in S).
The infinite Ramsey theorem for n-tuples and 2-colors states that $\forall C:[\mathbb{N}]^{n} \rightarrow 2 \exists H \underset{\text { inf. }}{\subseteq} \mathbb{N}\left(\forall x \in[H]^{n} C(x)=0\right.$ or $\left.\forall x \in[H]^{n} C(x)=1\right)$,
while "every $P \subseteq 2^{\mathbb{N}}$ is Ramsey" is almost the same assertion as
$\forall P:[\mathbb{N}]^{\infty} \rightarrow 2 \exists H \underset{\text { inf. }}{\subseteq} \mathbb{N}\left(\forall X \in[H]^{\infty} P(X)=0\right.$ or $\left.\forall X \in[H]^{\infty} P(X)=1\right)$.

Ramsey property (cont.)

Definition (Ramsey property)

Given $P \subseteq 2^{\mathbb{N}}$, we say that P is Ramsey if either

$$
\exists H \underset{\text { inf. }}{\subseteq} \mathbb{N} \forall X \underset{\text { inf. }}{\subseteq} H(X \in P) \quad \text { or } \quad \exists H \underset{\text { inf. }}{\subseteq} \mathbb{N} \forall X \underset{\text { inf. }}{\subseteq} H(X \notin P)
$$

holds.
$P=2^{\mathbb{N}}$ is Ramsey.
$\because)$ Let $H=\mathbb{N}$. Then $\forall X \underset{\text { inf. }}{\subseteq} H(X \in P)$.
$P=[(1)]=\{X \subseteq \mathbb{N}: 0 \in X\}$ is Ramsey.
$\because)$ Let $H=\mathbb{N} \backslash\{0\}=\{1,2,3, \ldots\}$. Then $\forall X \underset{\text { inf. }}{\subseteq} H(X \notin P)$.
On the other hand, Axiom of Choice implies " $\exists P$ (P is not Ramsey)."

Ramsey property (cont.)

Definition (Ramsey property)

Given $P \subseteq 2^{\mathbb{N}}$, we say that P is Ramsey if either

$$
\exists H \underset{\text { inf. }}{\subseteq} \mathbb{N} \forall X \underset{\text { inf. }}{\subseteq} H(X \in P) \quad \text { or } \quad \exists H \underset{\text { inf. }}{\subseteq} \mathbb{N} \forall X \underset{\text { inf. }}{\subseteq} H(X \notin P)
$$

holds.
$P=2^{\mathbb{N}}$ is Ramsey.
$\because)$ Let $H=\mathbb{N}$. Then $\forall X \underset{\text { inf. }}{\subseteq} H(X \in P)$.
$P=[(1)]=\{X \subseteq \mathbb{N}: 0 \in X\}$ is Ramsey.
$\because)$ Let $H=\mathbb{N} \backslash\{0\}=\{1,2,3, \ldots\}$. Then $\forall X \underset{\text { inf. }}{\subseteq} H(X \notin P)$.
On the other hand,
Axiom of Choice implies " $\exists P$ (P is not Ramsey)."

Open sets are Ramsey

Introduce the topology over $2^{\mathbb{N}}$ by taking $\left\{[s]: s \in 2^{<\mathbb{N}}\right\}$ as open basis.
(This is the same topology as the product topology $2^{\mathbb{N}}$ where each 2 is discrete.)
The topological space $2^{\mathbb{N}}$ with this topology is called Cantor space.

Theorem

Every open set $P \subseteq 2^{\mathbb{N}}$ is Ramsey.
Proof: Later.

Ramseyness on each class

■ Every open $\left(\Sigma_{1}^{0}\right)$ set is Ramsey.

- Every Borel(Δ_{1}^{1}) set is Ramsey. [Galvin-Prikry '73]
- Every analytic (Σ_{1}^{1}) set is Ramsey. [Silver '70]
- Δ_{2}^{1}-Ramseyness is independent of ZFC.
- Existence of a measurable cardinal implies Σ_{2}^{1}-Ramseyness.
- $V=L$ implies \neg (Δ_{2}^{1}-Ramseyness).
- There is $P \subseteq 2^{\mathbb{N}}$ which is not Ramsey. (Uses Axiom of Choice)

Ramseyness on each class

■ Every open $\left(\Sigma_{1}^{0}\right)$ set is Ramsey.
■ Every $\operatorname{Borel}\left(\Delta_{1}^{1}\right)$ set is Ramsey. [Galvin-Prikry '73]

- Every analytic $\left(\Sigma_{1}^{1}\right)$ set is Ramsey. [Silver '70]
- Δ_{2}^{1}-Ramseyness is independent of ZFC.
- Existence of a measurable cardinal implies \sum_{2}^{1}-Ramseyness.
- $V=L$ implies \neg (Δ_{2}^{1}-Ramseyness).
- There is $P \subseteq 2^{\mathbb{N}}$ which is not Ramsey. (Uses Axiom of Choice)

Ramseyness on each class

■ Every open $\left(\Sigma_{1}^{0}\right)$ set is Ramsey.

- Every $\operatorname{Borel}\left(\Delta_{1}^{1}\right)$ set is Ramsey. [Galvin-Prikry '73]

■ Every analytic (Σ_{1}^{1}) set is Ramsey. [Silver '70]

- Δ_{2}^{1}-Ramseyness is independent of ZFC.
- Existence of a measurable cardinal implies Σ_{2}^{1}-Ramseyness.

■ $V=L$ implies \neg (Δ_{2}^{1}-Ramseyness).

- There is $P \subseteq 2^{\mathbb{N}}$ which is not Ramsey. (Uses Axiom of Choice)

Ramseyness on each class

■ Every open $\left(\Sigma_{1}^{0}\right)$ set is Ramsey.
■ Every Borel $\left(\Delta_{1}^{1}\right)$ set is Ramsey. [Galvin-Prikry '73]
■ Every analytic (Σ_{1}^{1}) set is Ramsey. [Silver '70]

- Δ_{2}^{1}-Ramseyness is independent of ZFC.
- Existence of a measurable cardinal implies Σ_{2}^{1}-Ramseyness.
- $V=L$ implies $\neg\left(\Delta_{2}^{1}\right.$-Ramseyness $)$.
- There is $P \subseteq 2^{\mathbb{N}}$ which is not Ramsey. (Uses Axiom of Choice)

2 Determinacy of infinite games

3 Second-order arithmetic

4 Ramsey property and determinacy

Infinite game

Given $G \subseteq \mathbb{N}^{\mathbb{N}}$, consider the following infinite game:

I	a_{0}		a_{2}		\cdots
II		a_{1}		a_{3}	\cdots

The player I wins this game if $x \in G$; the player II wins if $x \notin G$.
A strategy for I (II resp.) is a function such that, for each step, input is every II (I)'s choice, output is a unique I (II)'s choice. A strategy σ for I (II) is winning, if I (II) always wins no matter how II (I) plays, whenever I (II) follows σ.
$G \subseteq \mathbb{N}^{\mathbb{N}}$ is determined if either I or II has a winning strategy in this game.
Axiom of Choice implies " $\exists G$ (G is not determined)."

Infinite game

Given $G \subseteq \mathbb{N}^{\mathbb{N}}$, consider the following infinite game:

I	a_{0}		a_{2}		\cdots
II		a_{1}		a_{3}	\cdots

The player I wins this game if $x \in G$; the player II wins if $x \notin G$.
A strategy for I (II resp.) is a function such that, for each step, input is every II (I)'s choice, output is a unique I (II)'s choice.

A strategy σ for I (II) is winning, if I (II) always wins no matter how II (I) plays, whenever I (II) follows σ.
$G \subseteq \mathbb{N}^{\mathbb{N}}$ is determined if either I or II has a winning strategy in this game.

Axiom of Choice implies " $\exists G$ (G is not determined)."

Infinite game

Given $G \subseteq \mathbb{N}^{\mathbb{N}}$, consider the following infinite game:

I	a_{0}		a_{2}		\cdots
II		a_{1}		a_{3}	\cdots

The player I wins this game if $x \in G$; the player II wins if $x \notin G$.
A strategy for I (II resp.) is a function such that, for each step, input is every II (I)'s choice, output is a unique I (II)'s choice.

A strategy σ for I (II) is winning, if I (II) always wins no matter how II (I) plays, whenever I (II) follows σ.
$G \subseteq \mathbb{N}^{\mathbb{N}}$ is determined if either I or II has a winning strategy in this game.

Axiom of Choice implies " $\exists G$ (G is not determined)."

Open games are determined

Theorem

Every open game (i.e. game where $G \subseteq \mathbb{N}^{\mathbb{N}}$ is open) is determined.

Proof.

Assume G is open and the player I does not have a winning strategy.
Then we can see that, for every play a_{0} by I, there exists a play a_{1} by II, such that I does not have a winning strategy after that. Then, after that, for every play a_{2} by I, there exists a play a_{3} by II, such that I does not have a winning strategy after that.
This procedure gives a strategy for II, and since G is open this strategy is winning.

Determinacy on each class

" Γ game" is a game of which winning set is Γ.
■ Every open $\left(\Sigma_{1}^{0}\right)$ game is determined. [Gale-Stewart '53]

- Every $\operatorname{Borel}\left(\Delta_{1}^{1}\right)$ game is determined. (Needs Powerset $\times \aleph_{1}$ times)
- Σ_{1}^{1}-determinacy is independent of ZFC.
- If $\forall x \exists x^{\sharp}$ then every Σ_{1}^{1} game is determined. [Martin,
- If $V=L$ then there is a Σ_{1}^{1} game which is not determined.
- There is a game which is not determined. (Uses AC) [Gale-Stewart '53]

Determinacy on each class

" Γ game" is a game of which winning set is Γ.
■ Every open $\left(\Sigma_{1}^{0}\right)$ game is determined. [Gale-Stewart '53]
■ Every $\operatorname{Borel}\left(\Delta_{1}^{1}\right)$ game is determined. (Needs Powerset $\times \boldsymbol{\aleph}_{1}$ times) [Martin '75]

- Σ_{1}^{1}-determinacy is independent of ZFC.
- If $\forall x \exists x^{\#}$ then every Σ_{1}^{1} game is determined. [Martin,
- If $V=L$ then there is a Σ_{1}^{1} game which is not determined.
- There is a game which is not determined. (Uses AC) [Gale-Stewart '53]

Determinacy on each class

" Γ game" is a game of which winning set is Γ.
■ Every open $\left(\Sigma_{1}^{0}\right)$ game is determined. [Gale-Stewart '53]

- Every $\operatorname{Borel}\left(\Delta_{1}^{1}\right)$ game is determined. (Needs Powerset $\times \boldsymbol{\aleph}_{1}$ times) [Martin '75]
$\square \Sigma_{1}^{1}$-determinacy is independent of ZFC.
- If $\forall x \exists x^{\sharp}$ then every Σ_{1}^{1} game is determined. [Martin, Harrington]
- If $V=L$ then there is a Σ_{1}^{1} game which is not determined.
- There is a game which is not determined. (Uses AC) [Gale-Stewart '53]

1 Ramsey property

2 Determinacy of infinite games

3 Second-order arithmetic

4 Ramsey property and determinacy

Reverse Mathematics

Second-order arithmetic is the system which treats natural numbers and sets of natural numbers.
An axiom system of second-order arithmetic (subsystem of second-order arithmetic) typically consists of:

- Basic axioms of arithmetic (e.g. $x+y=y+x$)
- Induction scheme

■ Set existence axiom (e.g. "every computable set exists.")
Reverse Mathematics is a program to find, given a theorem φ of mathematics, the smallest axiom which proves φ in second-order arithmetic.
E.g. the Bolzano-Weierstraß theorem (every bounded monotone sequence of real numbers converges) is equivalent to $A C A_{0}$ over RCA_{0}. $\mathrm{RCA}_{0}<\mathrm{WKL}_{0}<\mathrm{ACA}_{0}<\mathrm{ATR}_{0}<\Pi_{1}^{1}-\mathrm{CA}_{0} \quad$ (Big Five)

Reverse Mathematics

Second-order arithmetic is the system which treats natural numbers and sets of natural numbers.
An axiom system of second-order arithmetic (subsystem of second-order arithmetic) typically consists of:

- Basic axioms of arithmetic (e.g. $x+y=y+x$)

■ Induction scheme
■ Set existence axiom (e.g. "every computable set exists.")
Reverse Mathematics is a program to find, given a theorem φ of mathematics, the smallest axiom which proves φ in second-order arithmetic.
E.g. the Bolzano-Weierstraß theorem (every bounded monotone sequence of real numbers converges) is equivalent to $A C A_{0}$ over RCA_{0}.

$$
\begin{aligned}
\mathrm{RCA}_{0}<\mathrm{WKL}_{0}<\mathrm{ACA}_{0} & <\mathrm{ATR}_{0}<\Pi_{1}^{1}-\mathrm{CA}_{0} \quad \text { (Big Five) } \\
& <\Pi_{1}^{1}-\mathrm{TR}_{0}<\Sigma_{1}^{1}-\mathrm{ID}_{0}<\Pi_{2}^{1}-\mathrm{CA}_{0}<\cdots<\mathrm{Z}_{2}
\end{aligned}
$$

Ramseyness in second-order arithmetic

Theorem (RCA_{0})

■ $\mathrm{ATR}_{0} \Leftrightarrow \Delta_{1}^{0}$-Ram $\Leftrightarrow \Sigma_{1}^{0}$-Ram. [Friedman-McAloon-Simpson '82]
■ $\Pi_{1}^{1}-\mathrm{CA}_{0} \Leftrightarrow \Delta_{2}^{0}$-Ram $\Leftrightarrow \Sigma_{\infty}^{0}$-Ram. [Simpson, Solovay]

- $\Pi_{1}^{1}-\mathrm{TR}_{0} \Leftrightarrow \Delta_{1}^{1}$-Ram. [Tanaka '89]

■ Σ_{1}^{1} - $\mathrm{ID}_{0} \Leftrightarrow \Sigma_{1}^{1}$-Ram. [Tanaka '89]

ATR_{0}	\leftrightarrow	Σ_{1}^{0}-Ram
$\Pi_{1}^{1}-\mathrm{CA}_{0}$	\leftrightarrow	Δ_{2}^{0}-Ram
$\Pi_{1}^{1}-\mathrm{TR}_{0}$	\leftrightarrow	Δ_{1}^{1}-Ram
$\Sigma_{1}^{1}-\mathrm{ID}_{0}$	\leftrightarrow	Σ_{1}^{1}-Ram
ZFC	\nvdash	Δ_{2}^{1}-Ram

Determinacy in second-order arithmetic

Theorem (RCA_{0})

- ATR $_{0} \Leftrightarrow \Delta_{1}^{0}$-Det $\Leftrightarrow \Sigma_{1}^{0}$-Det. [Steel '78]
- $\Pi_{1}^{1}-\mathrm{CA}_{0} \Leftrightarrow\left(\Sigma_{1}^{0} \wedge \Pi_{1}^{0}\right)$-Det. [Tanaka '90]
- $\Pi_{1}^{1}-\mathrm{TR}_{0} \Leftrightarrow \Delta_{2}^{0}$-Det. [Tanaka '91]
- Σ_{1}^{1} - $\mathrm{ID}_{0} \Leftrightarrow \Sigma_{2}^{0}$-Det. [Tanaka '91]

■ $\left[\Sigma_{1}^{1}\right]^{\mathrm{TR}}{ }_{-I D_{0}} \Leftrightarrow \Delta_{3}^{0}$-Det (over $\Pi_{3}^{1}-\mathrm{TI}_{0}$). [MedSalem-Tanaka '08]

- Π_{3}^{1}-CA $\Rightarrow \Sigma_{3}^{0}$-Det. [Welch '09]
(Note: Determinacy here is the determinacy of games over \mathbb{N}.)

Ramseyness and determinacy

ATR_{0}	\leftrightarrow	Σ_{1}^{0}-Ram	\leftrightarrow	Σ_{1}^{0}-Det	$\}_{\left(+\Pi_{3}^{1}-\mathrm{T} \mathrm{I}_{0}\right)} \text { over RCA }$	
$\Pi_{1}^{1}-\mathrm{CA}_{0}$	\leftrightarrow	Δ_{2}^{0}-Ram	\leftrightarrow	$\Sigma_{1}^{0} \wedge \Pi_{1}^{0}$-Det		
$\Pi_{1}^{1}-\mathrm{TR}_{0}$	\leftrightarrow	Δ_{1}^{1}-Ram	\leftrightarrow	Δ_{2}^{0}-Det		
Σ_{1}^{1} - ID_{0}	\leftrightarrow	Σ_{1}^{1}-Ram	\leftrightarrow	Σ_{2}^{0}-Det		
$\left[\Sigma_{1}^{1}\right]^{\text {TR }}{ }_{-1 \mathrm{ID}_{0}}$			\leftrightarrow	Δ_{3}^{0}-Det		
$\Pi_{3}^{1}-\mathrm{CA}_{0}$			\vdash	Σ_{3}^{0}-Det		
Z_{2}			K	Σ_{4}^{0}-Det		
ZFC			\vdash	Δ_{1}^{1}-Det		
ZFC	\forall	$\begin{aligned} & \hline \Delta_{2}^{1}-\operatorname{Ram} \\ & \Sigma_{2}^{1} \text {-Ram } \end{aligned}$		Σ_{1}^{1}-Det Δ_{2}^{1}-Det		

2 Determinacy of infinite games

3 Second-order arithmetic

4 Ramsey property and determinacy

Determinacy implies Ramsey property (1)

Theorem (Kastanas) (ZF + DC)

Let Γ be a class of subsets of $\mathbb{N}^{\mathbb{N}}$ (e.g. $\Sigma_{1}^{0}, \Sigma_{1}^{1}$, etc.). Then,
"the determinacy of Γ-games over reals" implies
"the Ramsey property for sets of reals in $Г$."
(Corollary: Every open set is Ramsey.)
This is proved by constructing certain game whose winning strategy implies Ramsey property (next 2 slides).

Γ-determinacy over reals $\Rightarrow \Gamma$-Ramseyness

Given $P \subseteq 2^{\mathbb{N}}$ in Γ, consider the following game:

I	A_{0}		A_{1}	\cdots
II		$\left(n_{0}, B_{0}\right)$		$\left(n_{1}, B_{1}\right)$
\cdots				

where $\mathbb{N} \supseteq A_{i} \supseteq B_{i} \supseteq A_{i+1}$: infinite, $n_{i} \in A_{i}, n_{i}<\min B_{i}$.
I wins if $\left\{n_{0}, n_{1}, \ldots\right\} \in P$.
This is a Γ-game.

Lemma

■ I has a winning strategy $\Rightarrow \exists H \underset{\text { inf. }}{\subseteq} \mathbb{N} \forall X \underset{\text { inf. }}{\subseteq} H(X \in P)$.

- II has a winning strategy $\Rightarrow \exists H \underset{\text { inf. }}{\subseteq} \forall X \underset{\text { inf. }}{\subseteq} H(X \notin P)$.
σ : winning strategy for I.
Goal: Construct homogeneous set $H=\left\{n_{0}<n_{1}<n_{2}<n_{3}<\cdots\right\}$.
σ : winning strategy for I.
Goal: Construct homogeneous set $H=\left\{n_{0}<n_{1}<n_{2}<n_{3}<\cdots\right\}$. I
A_{0}
$\left(n_{0}, X_{0}^{(0)}\right)$

I

II

I

II

I

Every subsequence of $H=\left\{n_{0}<n_{1}<n_{2}<n_{3}<\cdots\right\}$ can be realized as II's play.
σ : winning strategy for I.
Goal: Construct homogeneous set $H=\left\{n_{0}<n_{1}<n_{2}<n_{3}<\cdots\right\}$. I
A_{0}
1
II $\quad\left(n_{0}, X_{0}^{(0)}\right)$
$X_{1}^{(0)}$

II

I

II
$+$
.

$$
\left(n_{2}, X_{3}^{(2)}\right) \quad\left(n_{3}, X^{(3)}\right) \quad\left(n_{3}, X^{(3)}\right)
$$

I
σ : winning strategy for I.
Goal: Construct homogeneous set $H=\left\{n_{0}<n_{1}<n_{2}<n_{3}<\cdots\right\}$.

σ : winning strategy for I .
Goal: Construct homogeneous set $H=\left\{n_{0}<n_{1}<n_{2}<n_{3}<\cdots\right\}$.

σ : winning strategy for I.
Goal: Construct homogeneous set $H=\left\{n_{0}<n_{1}<n_{2}<n_{3}<\cdots\right\}$.

σ : winning strategy for I .
Goal: Construct homogeneous set $H=\left\{n_{0}<n_{1}<n_{2}<n_{3}<\cdots\right\}$.

σ : winning strategy for I .
Goal: Construct homogeneous set $H=\left\{n_{0}<n_{1}<n_{2}<n_{3}<\cdots\right\}$.

σ : winning strategy for I .
Goal: Construct homogeneous set $H=\left\{n_{0}<n_{1}<n_{2}<n_{3}<\cdots\right\}$.

σ : winning strategy for I .
Goal: Construct homogeneous set $H=\left\{n_{0}<n_{1}<n_{2}<n_{3}<\cdots\right\}$.

σ : winning strategy for I.

Goal: Construct homogeneous set $H=\left\{n_{0}<n_{1}<n_{2}<n_{3}<\cdots\right\}$.

$$
\begin{array}{ccc}
\text { II } & & \left(n_{2}, X_{3}^{(2)}\right) \\
& & \\
& \text { I } & X_{4}^{(2)}
\end{array}
$$

Every subsequence of $H=\left\{n_{0}<n_{1}<n_{2}<n_{3}<\cdots\right\}$ can be realized as II's play.
σ : winning strategy for I .
Goal: Construct homogeneous set $H=\left\{n_{0}<n_{1}<n_{2}<n_{3}<\cdots\right\}$.

Every subsequence of $H=\left\{n_{0}<n_{1}<n_{2}<n_{3}<\cdots\right\}$ can be realized as II's play.

σ : winning strategy for I.

Goal: Construct homogeneous set $H=\left\{n_{0}<n_{1}<n_{2}<n_{3}<\cdots\right\}$.

σ : winning strategy for I .
Goal: Construct homogeneous set $H=\left\{n_{0}<n_{1}<n_{2}<n_{3}<\cdots\right\}$.

Every subsequence of $H=\left\{n_{0}<n_{1}<n_{2}<n_{3}<\cdots\right\}$ can be realized as II's play.

Determinacy implies Ramsey property (2)

Theorem (Kastanas) (ZF + DC)

Let Γ be a class of subsets of $\mathbb{N}^{\mathbb{N}}$ (e.g. $\Sigma_{1}^{0}, \Sigma_{1}^{1}$, etc.). Then,
"the determinacy of Γ-games over reals" implies
"the Ramsey property for sets of reals in Γ."

Theorem (Tanaka) (ZF + DC)

- The determinacy of Σ_{2}^{0}-games over reals $\Rightarrow \Sigma_{1}^{1}$-Ramseyness.
- The determinacy of Σ_{n}^{1}-games over reals $\Rightarrow \Sigma_{n+1}^{1}$-Ramseyness.

Determinacy implies Ramsey property (2)

Theorem (Kastanas) (ZF + DC)

Let Γ be a class of subsets of $\mathbb{N}^{\mathbb{N}}$ (e.g. $\Sigma_{1}^{0}, \Sigma_{1}^{1}$, etc.). Then,
"the determinacy of Γ-games over reals" implies
"the Ramsey property for sets of reals in Г."

Theorem (Tanaka) (ZF + DC)

- The determinacy of Σ_{2}^{0}-games over reals $\Rightarrow \Sigma_{1}^{1}$-Ramseyness.
- The determinacy of Σ_{n}^{1}-games over reals $\Rightarrow \Sigma_{n+1}^{1}$-Ramseyness.

Summary and Question

Conjecture

For all $n \in \omega, \quad \operatorname{RCA}_{0} ? \vdash \Sigma_{n}^{1}$-Det $\rightarrow \Sigma_{n+1}^{1}$-Ram.

Thank you very much.

\square Ilias G. Kastanas.
On the Ramsey property for the sets of reals.
Journal of Symbolic Logic, 48:1035-1045, 1983.Kazuyuki Tanaka.
A game-theoretic proof of analytic Ramsey theorem.
Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 38:301-304, 1992.Kazuyuki Tanaka.
The Galvin-Prikry theorem and set existence axioms.
Annals of Pure and Applied Logic, 42:81-104, 1989.
Stephen G. Simpson.
Subsystems of Second Order Arithmetic.
Perspectives in Logic. Cambridge University Press, 2009.

