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Abstract

This is an introductory talk about Ramsey property and
determinacy of infinite games.
They are both the properties of sets of reals, i.e. subsets of 2N or
NN.

This is ongoing work (in progress) to find the relation between
Ramseyness and determinacy within second-order arithmetic.
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Notation

2 = { 0, 1 }

2<N (= 2∗) :=
⋃

n∈N 2
n

= (the set of finite sequences of 0 and 1)

2N = (the set of infinite sequences of 0 and 1)

P(N) = 2N by identifing N ⊇ X = χX ∈ 2
N

For s = (s0, . . . , sn−1) ∈ 2<N and x = (x0, x1, . . . ) ∈ 2N, write

s ⊆ x :⇔ ∀i < n(si = xi).

For s ∈ 2<N, put
[s] = { x ∈ 2N : s ⊆ x } .
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Ramsey property

Definition (Ramsey property)

Given P ⊆ 2N, we say that P is Ramsey if either

∃H ⊆
inf.
N ∀X ⊆

inf.
H (X ∈ P) or ∃H ⊆

inf.
N ∀X ⊆

inf.
H (X < P)

holds.

P = 2N is Ramsey.

∵) Let H = N. Then ∀X ⊆
inf.

H (X ∈ P).

P = [(1)] = { X ⊆ N : 0 ∈ X } is Ramsey.

∵) Let H = N r { 0 } = { 1, 2, 3, . . . }. Then ∀X ⊆
inf.

H (X < P).

On the other hand,

Axiom of Choice implies “∃P (P is not Ramsey).”

However, we can say P is Ramsey when P is simple enough.
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Motivation

For a set S,
[S]n := { s ⊆ S : |s | = n }

(the set of unordered n-tuples in S).

The infinite Ramsey theorem for n-tuples and 2-colors states that

∀C : [N]n → 2 ∃H ⊆
inf.
N (∀x ∈ [H]n C(x) = 0 or ∀x ∈ [H]n C(x) = 1),

while “every P ⊆ 2N is Ramsey” is almost the same assertion as

∀P : [N]∞ → 2 ∃H ⊆
inf.
N (∀X ∈ [H]∞ P(X) = 0 or ∀X ∈ [H]∞ P(X) = 1).
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Ramsey property (cont.)

Definition (Ramsey property)
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Ramsey property (cont.)
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Open sets are Ramsey

Introduce the topology over 2N by taking { [s] : s ∈ 2<N } as open
basis.
(This is the same topology as the product topology 2N where each
2 is discrete.)
The topological space 2N with this topology is called Cantor space.

Theorem

Every open set P ⊆ 2N is Ramsey.

Proof: Later.
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Ramseyness on each class

Every open(Σ01) set is Ramsey.

Every Borel(∆11) set is Ramsey. [Galvin–Prikry ’73]

Every analytic(Σ11) set is Ramsey. [Silver ’70]

∆12-Ramseyness is independent of ZFC.

Existence of a measurable cardinal implies Σ12-Ramseyness.
V = L implies ¬(∆12-Ramseyness).

There is P ⊆ 2N which is not Ramsey. (Uses Axiom of Choice)
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Infinite game

Given G ⊆ NN, consider the following infinite game:

I a0 a2 · · ·
→ x = (a0, a1, a2, a3, . . . )II a1 a3 · · ·

The player I wins this game if x ∈ G; the player II wins if x < G.

A strategy for I (II resp.) is a function such that, for each step,
input is every II (I)’s choice, output is a unique I (II)’s choice.

A strategy σ for I (II) is winning, if I (II) always wins no matter
how II (I) plays, whenever I (II) follows σ.

G ⊆ NN is determined if either I or II has a winning strategy in
this game.

Axiom of Choice implies “∃G (G is not determined).”
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Open games are determined

Theorem

Every open game (i.e. game where G ⊆ NN is open) is determined.

Proof.

Assume G is open and the player I does not have a winning
strategy.
Then we can see that, for every play a0 by I, there exists a play a1
by II, such that I does not have a winning strategy after that.
Then, after that, for every play a2 by I, there exists a play a3 by II,
such that I does not have a winning strategy after that.
This procedure gives a strategy for II, and since G is open this
strategy is winning. �
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Determinacy on each class

“Γ game” is a game of which winning set is Γ.

Every open(Σ01) game is determined. [Gale–Stewart ’53]

Every Borel(∆11) game is determined. (Needs Powerset × ℵ1
times) [Martin ’75]

Σ11-determinacy is independent of ZFC.

If ∀x∃x] then every Σ11 game is determined. [Martin,
Harrington]
If V = L then there is a Σ11 game which is not determined.

There is a game which is not determined. (Uses AC)
[Gale–Stewart ’53]
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Reverse Mathematics

Second-order arithmetic is the system which treats natural
numbers and sets of natural numbers.
An axiom system of second-order arithmetic (subsystem of
second-order arithmetic) typically consists of:

Basic axioms of arithmetic (e.g. x + y = y + x)

Induction scheme

Set existence axiom (e.g. “every computable set exists.”)

Reverse Mathematics is a program to find, given a theorem ϕ of
mathematics, the smallest axiom which proves ϕ in second-order
arithmetic.
E.g. the Bolzano–Weierstraß theorem (every bounded monotone

sequence of real numbers converges) is equivalent to ACA0 over RCA0.

RCA0 < WKL0 < ACA0 < ATR0 < Π
1
1-CA0 (Big Five)

< Π1
1-TR0 < Σ

1
1-ID0 < Π

1
2-CA0 < · · · < Z2

Y. Omata (Tohoku U.) Ramsey property and infinite game in second-order arithmetic 15 / 25
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Ramseyness in second-order arithmetic

Theorem (RCA0)

ATR0 ⇔ ∆
0
1-Ram⇔ Σ01-Ram. [Friedman–McAloon–Simpson

’82]

Π1
1-CA0 ⇔ ∆

0
2-Ram ⇔ Σ0∞-Ram. [Simpson, Solovay]

Π1
1-TR0 ⇔ ∆

1
1-Ram. [Tanaka ’89]

Σ11-ID0 ⇔ Σ
1
1-Ram. [Tanaka ’89]

ATR0 ↔ Σ01-Ram

Π1
1-CA0 ↔ ∆02-Ram

Π1
1-TR0 ↔ ∆11-Ram

Σ11-ID0 ↔ Σ11-Ram

ZFC 6 |− ∆12-Ram
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Determinacy in second-order arithmetic

Theorem (RCA0)

ATR0 ⇔ ∆
0
1-Det ⇔ Σ01-Det. [Steel ’78]

Π1
1-CA0 ⇔ (Σ

0
1 ∧ Π

0
1)-Det. [Tanaka ’90]

Π1
1-TR0 ⇔ ∆

0
2-Det. [Tanaka ’91]

Σ11-ID0 ⇔ Σ
0
2-Det. [Tanaka ’91]

[Σ11]
TR-ID0 ⇔ ∆

0
3-Det (over Π1

3-TI0). [MedSalem–Tanaka ’08]

Π1
3-CA0 ⇒ Σ

0
3-Det. [Welch ’09]

(Note: Determinacy here is the determinacy of games over N.)
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Ramseyness and determinacy

ATR0 ↔ Σ01-Ram ↔ Σ01-Det
}

over RCA0

Π1
1-CA0 ↔ ∆02-Ram ↔ Σ01 ∧ Π

0
1-Det

Π1
1-TR0 ↔ ∆11-Ram ↔ ∆02-Det
Σ11-ID0 ↔ Σ11-Ram ↔ Σ02-Det
[Σ11]

TR-ID0 ↔ ∆03-Det (+Π1
3-TI0)

Π1
3-CA0 |− Σ03-Det

Z2 6 |− Σ04-Det
ZFC |− ∆11-Det

∆12-Ram Σ11-Det
ZFC 6 |− Σ12-Ram ∆12-Det

...
...
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Determinacy implies Ramsey property (1)

Theorem (Kastanas) (ZF + DC)

Let Γ be a class of subsets of NN (e.g. Σ01, Σ11, etc.). Then,

“the determinacy of Γ-games over reals”

implies

“the Ramsey property for sets of reals in Γ.”

(Corollary: Every open set is Ramsey.)

This is proved by constructing certain game whose winning
strategy implies Ramsey property (next 2 slides).
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Γ-determinacy over reals ⇒ Γ-Ramseyness

Given P ⊆ 2N in Γ, consider the following game:

I A0 A1 · · ·

II (n0, B0) (n1, B1) · · ·

where N ⊇ Ai ⊇ Bi ⊇ Ai+1: infinite, ni ∈ Ai, ni < min Bi.

I wins if { n0, n1, . . . } ∈ P.
This is a Γ-game.

Lemma

I has a winning strategy ⇒ ∃H ⊆
inf.
N ∀X ⊆

inf.
H (X ∈ P).

II has a winning strategy ⇒ ∃H ⊆
inf.
N ∀X ⊆

inf.
H (X < P).
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σ: winning strategy for I.
Goal: Construct homogeneous set H = { n0 < n1 < n2 < n3 < · · · }.
A0

(n0, X
(0)
0 )

X
(0)
1

(n1, X
(1)
1 )

X
(1)
2

(n2, X
(2)
3 )

X
(2)
4

(n3, X
(3))

.

.

.

(n3, X
(3))

.

.

.

I

II

I

II

I

II

I

II

(n3, X
(3))

.

.

.

X
(2)
3

(n2, X
(2)
2 ) (n3, X

(3))

.

.

.

(n2, X
(2)
1 )

X
(2)
2

(n3, X
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.

.

.

X
(1)
1
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X
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1

(n2, X
(2)
0 )

.

.

.

(n3, X
(3))

.

.

.

Every subsequence of H = { n0 < n1 < n2 < n3 < · · · } can be
realized as II’s play.
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Determinacy implies Ramsey property (2)

Theorem (Kastanas) (ZF + DC)

Let Γ be a class of subsets of NN (e.g. Σ01, Σ11, etc.). Then,

“the determinacy of Γ-games over reals”

implies

“the Ramsey property for sets of reals in Γ.”

Theorem (Tanaka) (ZF + DC)

The determinacy of Σ02-games over reals ⇒ Σ11-Ramseyness.

The determinacy of Σ1n-games over reals ⇒ Σ1n+1-Ramseyness.
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Summary and Question

ATR0 ↔ Σ01-Ram ↔ Σ01-Det
}

over RCA0

Π1
1-CA0 ↔ ∆02-Ram ↔ Σ01 ∧ Π

0
1-Det

Π1
1-TR0 ↔ ∆11-Ram ↔ ∆02-Det
Σ11-ID0 ↔ Σ11-Ram ↔ Σ02-Det
[Σ11]

TR-ID0 ↔ ∆03-Det (+Π1
3-TI0)

Π1
3-CA0 |− Σ03-Det

Z2 6 |− Σ04-Det
ZFC |− ∆11-Det

Σ12-Ram ← Σ11-Det
}

over ZFCZFC 6 |− Σ13-Ram ← Σ12-Det
...

...

Conjecture

For all n ∈ ω, RCA0? |− Σ
1
n-Det→ Σ1n+1-Ram.
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Thank you very much.
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