Theories of concatenation, arithmetic, and undecidability

Yoshihiro Horihata

Yonago National College of Technology

Feb 19, 2013

Computability Theory and Foundations of Mathematics
Contents

- An introduction for Theories of Concatenation
- Weak theories of concatenation and arithmetic
- Minimal essential undecidability
Back ground and known results

\[C^2 \quad \triangledown \quad \triangledown \quad PA \]

\[\triangledown \quad \triangledown \quad TC \quad \triangledown \quad Q \]
In A. Grzegorczyk’s paper “Undecidability without arithmetization” (2005), he defined a \((\circ, \varepsilon, \alpha, \beta)\)-theory \(TC\) of concatenation, whose axioms are:

(TC1) \(\forall x (x \circ \varepsilon = \varepsilon \circ x = x)\) Axiom for identity
(TC2) \(\forall x \forall y \forall z (x \circ (y \circ z) = (x \circ y) \circ z)\) Associativity
(TC3) Editors Axiom:
\[
\forall x \forall y \forall u \forall v (x \circ y = u \circ v \rightarrow \\
\exists w ((x \circ w = u \land y = w \circ v) \lor (x = u \circ w \land w \circ y = v)))
\]
(TC4) \(\alpha \neq \varepsilon \land \forall x \forall y (x \circ y = \alpha \rightarrow x = \varepsilon \lor y = \varepsilon)\)
(TC5) \(\beta \neq \varepsilon \land \forall x \forall y (x \circ y = \beta \rightarrow x = \varepsilon \lor y = \varepsilon)\)
(TC6) \(\alpha \neq \beta\)
About (TC3); editors axiom

If \(x \bowtie y = u \bowtie v \),
About (TC3); editors axiom

If \(x \bowtie y = u \bowtie v, \)
About (TC3); editors axiom

If $x \bowtie y = u \bowtie v$,

\[
\begin{array}{c}
\text{Diagram with arrows for } x \bowtie y = u \bowtie v.
\end{array}
\]
TC : Theory of Concatenation

Definition

• \(x \sqsubseteq y \equiv \exists k \exists l ((k \bowtie x) \bowtie l = y) \)
• \(x \sqsubseteq_{\text{ini}} y \equiv \exists l (x \bowtie l = y) \)
• \(x \sqsubseteq_{\text{end}} y \equiv \exists k (k \bowtie x = y) \)
What can TC prove?

Proposition

TC proves the following assertions:

(1) $\forall x (x \alpha \neq \varepsilon \land \alpha x \neq \varepsilon)$

(2) $\forall x \forall y (xy = \varepsilon \rightarrow x = \varepsilon \land y = \varepsilon)$

(3) $\forall x \forall y (x \alpha = y \alpha \lor \alpha x = \alpha y \rightarrow x = y)$ *Weak cancellation*

Proposition

TC cannot prove the following assertions:

- $\forall x \forall y \forall z (xz = yz \rightarrow x = y)$ *cancellation*
TC and undecidability

Theorem [Grzegorczyk, 2005]

TC is undecidable.

Moreover,

Theorem [Grzegorczyk and Zdanowski, 2007]

TC is essentially undecidable.

Grzegorczyk and Zdanowski conjectured that
(i) TC and Q are mutually interpretable;
(ii) TC is minimal essentially undecidable theory.
Definition of interpretation

\(L_1, L_2 \) : languages of first order logic.

A relative translation \(\tau : L_1 \to L_2 \) is a pair \(\langle \delta, F \rangle \) such that

- \(\delta \) is an \(L_2 \)-formula with one free variable.
- \(F \) maps each relation-symbol \(R \) of \(L_1 \) to an \(L_2 \)-formula \(F(R) \).

We translate \(L_1 \)-formulas to \(L_2 \)-formulas as follows:

- \((R(x_1, \cdots, x_n))^{\tau} := F(R)(x_1, \cdots, x_n) \);
- \((\cdot)^{\tau} \) commutes with the propositional connectives;
- \((\forall x \varphi(x))^{\tau} := \forall x (\delta(x) \to \varphi^{\tau}) \);
- \((\exists x \varphi(x))^{\tau} := \exists x (\delta(x) \land \varphi^{\tau}) \).
Definition of interpretation

Definition (relative interpretation)

L_1-theory T is (relatively) interpretable in L_2-theory S, denoted by $S \triangleright T$, iff there exists a relative translation $\tau : L_1 \rightarrow L_2$ such that

(i) $S \vdash \exists x \delta(x)$ and
(ii) for each axiom σ of T, $S \vdash \sigma^\tau$.

Proposition

Let S be a consistent theory. If $S \triangleright T$ and T is essentially undecidable, then S is also essentially undecidable.

The interpretability conserves the essential undecidability.
In 2009, the following results were proved by three ways independently: Visser and Sterken, Švejdar, and Ganea.

Theorem [2009]

TC interprets Q. (Hence TC ⪰ Q.)

Here, Q is Robinson’s arithmetic, whose language is \((+, \cdot, 0, S) \)

\[
\begin{align*}
Q1) \ & \forall x \forall y (S(x) = S(y) \rightarrow x = y) \\
Q2) \ & \forall x (S(x) \neq 0) \\
Q3) \ & \forall x (x + 0 = x) \\
Q4) \ & \forall x \forall y (x + S(y) = S(x + y)) \\
Q5) \ & \forall x (x \cdot 0 = 0) \\
Q6) \ & \forall x \forall y (x \cdot S(y) = x \cdot y + x) \\
Q7) \ & \forall x (x \neq 0 \rightarrow \exists y (x = S(y)))
\end{align*}
\]

Q is essentially undecidable and finitely axiomatizable.
The theory C^2 of concatenation consists of TC plus the following induction:

$$\varphi(\varepsilon) \land \forall x (\varphi(x) \rightarrow \varphi(x \cdot \alpha) \land \varphi(x \cdot \beta)) \rightarrow \forall x \varphi(x).$$

Here, φ is a $(\cdot, \varepsilon, \alpha, \beta)$-formula.

Then, Ganea proved that

Theorem [Ganea, 2009]

C^2 and PA are mutually interpretable.
Part I

A weak theory WTC of concatenation and mutual interpretability with \mathbb{R}
Arithmetic \mathbb{R} (Mostowski-Robinson-Tarski, 1953)

$\langle +, \cdot, 0, 1, \leq \rangle$-theory \mathbb{R}

For each $n, m \in \omega$, (\bar{n} represents $1 + \cdots + 1$)

(R1) $\bar{n} + \bar{m} = \bar{n + m}$

(R2) $\bar{n} \cdot \bar{m} = \bar{n \cdot m}$

(R3) $\bar{n} \neq \bar{m}$ (if $n \neq m$)

(R4) $\forall x (x \leq \bar{n} \rightarrow x = \bar{0} \lor x = \bar{1} \lor \cdots \lor x = \bar{n})$

(R5) $\forall x (x \leq \bar{n} \lor \bar{n} \leq x)$

* \mathbb{R} is Σ_1-complete and essentially undecidable.

* $\mathbb{R} \not\models Q$, since Q is finitely axiomatizable.
Arithmetic R_0 (Cobham, 1960’s)

$(+,\cdot, 0, 1, \leq)$-theory R_0

For each $n, m \in \omega$,

(R1) $\bar{n} + \bar{m} = n + m$

(R2) $\bar{n} \cdot \bar{m} = n \cdot m$

(R3) $\bar{n} \neq \overline{m}$ (if $n \neq m$)

(R4') $\forall x \left(x \leq \bar{n} \iff x = \bar{0} \lor x = \bar{1} \lor \cdots \lor x = \bar{n} \right)$

* R_0 interprets R by translating ‘\leq’ by ‘$<$’ as follows:

$$x < y \equiv [0 \leq y \land \forall u \left(u \leq y \land u \neq y \rightarrow u + 1 \leq y \right)] \rightarrow x \leq y.$$

* R_0 is **minimal** theory which is Σ_1-complete and essentially undecidable.
Arithmetic \mathcal{R}_1 (Jones and Shepherdson, 1983)

$(+,\cdot,0,1,\leq)$-theory \mathcal{R}_1

For each $n,m \in \omega$,

(R2) $\bar{n} \cdot \bar{m} = n \cdot m$
(R3) $\bar{n} \neq \bar{m}$ (if $n \neq m$)
(R4') $\forall x (x \leq \bar{n} \iff x = \bar{0} \lor x = \bar{1} \lor \cdots \lor x = \bar{n})$

\mathcal{R}_1 interprets \mathcal{R}_0 by J. Robinson’s definition of addition in terms of multiplication.

\mathcal{R}_1 is minimal theory which is essentially undecidable.
WTC: Weak Theory of Concatenation

$((\sqsubseteq, \varepsilon, \alpha, \beta)\text{-theory})$ \textit{WTC} has the following axioms: for each $u \in \{\alpha, \beta\}^*$,

(WTC1) $\forall x \sqsubseteq u (x \sqcup \varepsilon = \varepsilon \circ x = x)$;

(WTC2) $\forall x \forall y \forall z [(x \circ (y \circ z) \sqsubseteq u \lor (x \circ y) \circ z \sqsubseteq u] \rightarrow x \circ (y \circ z) = (x \circ y) \circ z$;

(WTC3) $\forall x \forall y \forall s \forall t [(x \circ y = s \circ t \land x \circ y \sqsubseteq u) \rightarrow \exists w ((x \circ w = s \land y = w \circ t) \lor (x = s \circ w \land w \circ y = t))];$

(WTC4) $\alpha \neq \varepsilon \land \forall x \forall y (x \circ y = \alpha \rightarrow x = \varepsilon \lor y = \varepsilon)$;

(WTC5) $\beta \neq \varepsilon \land \forall x \forall y (x \circ y = \beta \rightarrow x = \varepsilon \lor y = \varepsilon)$;

(WTC6) $\alpha \neq \beta$.
WTC: Weak Theory of Concatenation

Here, \(\{\alpha, \beta\}^* \) is a set of finite strings over \(\{\alpha, \beta\} \), including empty string \(\varepsilon \). Let \(\{\alpha, \beta\}^+ := \{\alpha, \beta\}^* \setminus \{\varepsilon\} \).

For each \(u \in \{\alpha, \beta\}^* \), we represent \(u \) in theories as \(u \) by adding parentheses from *left*. For example, \(\alpha\alpha\beta\alpha = ((\alpha\alpha)\beta)\alpha \). We call each \(u \ (\in \{\alpha, \beta\}^*) \) *standard string*.

Definition

- \(x \sqsubseteq y \equiv (x = y) \lor \exists k \exists l [kx = y \lor xl = y \lor (kx)l = y \lor k(xl) = y] \)
- \(x \sqsubseteq_{\text{ini}} y \equiv (x = y) \lor \exists l (xl = y) \)
- \(x \sqsubseteq_{\text{end}} y \equiv (x = y) \lor \exists k (kx = y) \)
Lemma

\(\forall x \ (x \sqsubseteq u \leftrightarrow \bigvee_{v \sqsubseteq u} x = v) \).

Theorem

\(\Sigma_1 \)-completeness of \(\text{WTC} \)\n
\(\text{WTC} \) is \(\Sigma_1 \)-complete, that is, for each \(\Sigma_1 \)-sentence \(\varphi \), if \(\{ \alpha, \beta \}^\ast \models \varphi \) then \(\text{WTC} \vdash \varphi \).

\(\{ \alpha, \beta \}^\ast \) is a standard model of \(\text{TC} \).
WTC interprets \(R \)

From now on, we consider the translation of \(R \) into \(WTC \).

translation of 0, 1, +

We translate 0, 1, + as follows:

- \(0 \Rightarrow \varepsilon \);
- \(1 \Rightarrow \alpha \);
- \(x + y \Rightarrow x \triangleleft y \);
- \(x \leq y \Rightarrow \exists z (x \triangleleft z = y) \).

To translate the product, we have to make it **total on \(\omega \)**. To do this, we consider notion, “witness for product”.

22
WTC interprets \mathbb{R}

An idea for the definition of witness

Witness w for 2×3 is as follows:

\[
w = \beta \beta \beta \beta \alpha \beta \alpha \alpha \beta \alpha \alpha \beta (\alpha \alpha)(\alpha \alpha) \beta \beta \alpha \alpha \alpha \beta (\alpha \alpha)(\alpha \alpha)(\alpha \alpha) \beta \beta
\]

This is from the following interpretation of 2×3:

\[
(0,0) \rightarrow (1,2) \rightarrow (2,2+2) \rightarrow (3,2+2+2).
\]

That is, 2×3 is interpreted as **adding 2 three times**.

By the help of above idea, we can represent the relation “w is a witness for product of x and y” by a formula $\text{PWitn}(x, y, w)$.
WTC interprets R

Translation of product

We translate the multiplication “$x \times y = z$” by
\[
\begin{align*}
(\exists w \text{Pwitn}(x, y, w) \land \beta \beta y \beta z \beta \beta \sqsubseteq_{\text{end}} w) \lor \\
(\neg (\exists w \text{Pwitn}(x, y, w))) \land z = 0.
\end{align*}
\]

Lemma (uniqueness of the witness on ω)

For each $u, v \in \{\alpha\}^*$, there exists $w \in \{\alpha, \beta\}^*$ such that

WTC proves

$\text{Pwitn}(u, v, w) \land \forall w'(\text{Pwitn}(u, v, w') \rightarrow w = w').$

Theorem

WTC interprets R.
Conversely, we can prove that R interprets WTC, by applying the Visser’s following theorem:

Visser’s theorem (2009)

T is interpretable in R iff T is locally finitely satisfiable

Here, a theory T is **locally finitely satisfiable** iff any finite subtheory of T has a finite model. Since WTC is locally finitely satisfiable, we can get the following result:

Corollary

R interprets WTC.
Conclusion of part I

Theorem

WTC and \(R \) are mutually interpretable.

Corollary

(1) WTC is essentially undecidable.
(2) WTC interprets \(T \) iff \(T \) is locally finitely satisfiable.
(3) WTC cannot interpret TC.
(4) \(WTC_2 \) and \(WTC_n \) \((n \geq 2) \) are mutually interpretable.

Here, \(WTC_n \) is WTC with \(n \)-th single-letters. (4) is from \(WTC_2 \triangleright R \triangleright WTC_n \triangleright WTC_2 \).
Part II

Minimal essential undecidability and variations of WTC
Minimal essential undecidability

Question

Is WTC *minimal* essentially undecidable?

Here, *minimal* essentially undecidable means if one omits one axiom from WTC, then the resulting theory is no longer essentially undecidable. Again, WTC is: for each $u \in \{\alpha, \beta\}$

(WTC1) \(\forall x \sqsubseteq u (x \smile \varepsilon = \varepsilon \smile x = x) \);

(WTC2) \(\forall x \forall y \forall z ([x \smile (y \smile z) \sqsubseteq u \lor (x \smile y) \smile z \sqsubseteq u] \rightarrow x \smile (y \smile z) = (x \smile y) \smile z) \);

(WTC3) \(\forall x \forall y \forall s \forall t [(x \smile y = s \smile t \land x \smile y \sqsubseteq u) \rightarrow \exists w ((x \smile w = s \land y = w \smile t) \lor (x = s \smile w \land w \smile y = t))] \);

(WTC4) \(\alpha \neq \varepsilon \land \forall x \forall y (x \smile y = \alpha \rightarrow x = \varepsilon \lor y = \varepsilon) \);

(WTC5) \(\beta \neq \varepsilon \land \forall x \forall y (x \smile y = \beta \rightarrow x = \varepsilon \lor y = \varepsilon) \);

(WTC6) \(\alpha \neq \beta \).
Minimal essential undecidability

Proposition

\[\text{WTC}-(\text{WTC } k) \ (k = 3, 4, 5, 6) \text{ is not essentially undecidable.} \]

We can find a decidable consistent extension of each \(\text{WTC}-(\text{WTC } k) \) \((k = 3, 4, 5, 6) \). Hence remaining question is \[\text{WTC}-(\text{WTC } k) \ (k = 1, 2) \text{ is essentially undecidable?} \]
Minimal essential undecidability

Proposition

\[\text{WTC} - (\text{WTC} k) \ (k = 3, 4, 5, 6) \text{ is not essentially undecidable.} \]

We can find a decidable consistent extension of each \(\text{WTC} - (\text{WTC} k) \) \((k = 3, 4, 5, 6)\). Hence remaining question is

\[\text{WTC} - (\text{WTC} k) \ (k = 1, 2) \text{ is essentially undecidable?} \]

We have proved the following:

Theorem (with O. Yoshida)

\[\text{WTC} - (\text{WTC} 1) \text{ can interpret WTC.} \]

Hence, \(\text{WTC} - (\text{WTC} 1) \) is still essentially undecidable.
This is proved by the following two lemmas.

Lemma

For each $u \in \{\alpha, \beta\}^*$, \(\text{WTC} - (\text{WTC1})\) proves $u \varepsilon = \varepsilon u = u$.

⇒ Without (WTC1), axiom for identity, we can prove that the empty string works well, as an identity element, for at least all standard strings.

Lemma

\(\text{WTC} - (\text{WTC1})\) ⊢ $\forall x (x \sqsubseteq u \land \exists x' (x = (\varepsilon x') \varepsilon) \rightarrow \bigvee_{v \sqsubseteq u} x = v)$.

Although we do not know whether \(\text{WTC} - (\text{WTC1})\) can prove $\forall x (x \sqsubseteq u \rightarrow \bigvee_{v \sqsubseteq u} x = v)$ or not, the above Lemma is strong enough to interpret \(\text{WTC} \) into \(\text{WTC} - (\text{WTC1})\).
Then, we interpret \(WTC \) in \(WTC - (WTC1) \) as follows:

Domain \(\delta(x) \equiv x = \alpha \lor \exists x' (x = (\beta x')\varepsilon) \).

Remark that if \((\beta x')\varepsilon\) is standard, then \((\beta x')\varepsilon = \beta ((\varepsilon x')\varepsilon)\).

Constants \(\varepsilon \Rightarrow \beta, \alpha \Rightarrow \beta \alpha, \beta \Rightarrow \beta \beta \).

Let \(\Omega(x, y) \equiv \exists! x' \exists! y' (x = (\beta x')\varepsilon \land y = (\beta y')\varepsilon) \).

Then we translate concatenation as \(\text{Conc}(x, y, z) \equiv \)

\[
x = \alpha \lor y = \alpha \rightarrow z = \alpha \\
\land \Omega(x, y) \rightarrow \exists x' \exists y' [x = (\beta x')\varepsilon \land y = (\beta y')\varepsilon \land z = (\beta ((x'\varepsilon)y'))\varepsilon] \\
\land \text{o.w.} \rightarrow z = \alpha.
\]

Lemma

For each \(w \in \{\alpha, \beta\}^* \), \(WTC - (WTC1) \) can prove that if \(\text{Conc}(x, y, \beta w) \), then \(x \) and \(y \) are also standard.
WTC − (WTC1) ⊳ ◇ WTC

Question

Is WTC − (WTC1) minimal essentially undecidable?
Question

Is $\text{WTC}-(\text{WTC1})$ minimal essentially undecidable?

Theorem (K. Higuchi)

$\text{WTC}-(\text{WTC1})$ is interpretable in S2S.

Here, S2S is a monadic second-order logic whose language is $L = \{S_0, S_1, (P_a)_{a \in A}\}$. S_0, S_1 are two successors and P_a’s are unary predicates. Then, $\text{S2S} := \{\varphi \mid \varphi \text{ is an } L\text{-sentence} \& \{0, 1\}^* \models \varphi\}$. S2S is proved to be decidable by M. O. Rabin (1969).

Theorem

$\text{WTC}-(\text{WTC1})$ is minimal essentially undecidable theory.
On the other hand, we can consider the theory of concatenation without empty string: (\circ, α, β)-theory $\text{TC}^{-\varepsilon}$ has the following axioms:

(TC$^{-\varepsilon}1$) $\forall x \forall y \forall z (x \circ (y \circ z) = (x \circ y) \circ z)$

Associativity

(TC$^{-\varepsilon}2$) Editors Axiom:

$$\forall x \forall y \forall s \forall t (x \circ y = s \circ t \rightarrow (x = s \land y = t) \lor$$

$$\exists w ((x \circ w = s \land y = w \circ t) \lor (x = s \circ w \land w \circ y = t)))$$

(TC$^{-\varepsilon}3$) $\forall x \forall y (\alpha \neq x \circ y)$

(TC$^{-\varepsilon}4$) $\forall x \forall y (\beta \neq x \circ y)$

(TC$^{-\varepsilon}5$) $\alpha \neq \beta$
A weak version $\text{WT}C^{-\varepsilon}$ of $\text{T}C^{-\varepsilon}$ has the following axioms:

For each $u \in \{\alpha, \beta\}^+$,

(WTC$^{-\varepsilon}$1) $\forall x \forall y \forall z [(x \leftarrow y \leftarrow z) \sqsubseteq u \lor (x \leftarrow y) \leftarrow z \sqsubseteq u]$
\[\rightarrow x \leftarrow (y \leftarrow z) = (x \leftarrow y) \leftarrow z; \]

(WTC$^{-\varepsilon}$2) $\forall x \forall y \forall s \forall t [(x \leftarrow y = s \leftarrow t \land x \leftarrow y \sqsubseteq u) \rightarrow$
\[(x = y) \land (s = t) \lor \]
\[\exists w ((x \leftarrow w = s \land y = w \leftarrow t) \lor (x = s \leftarrow w \land w \leftarrow y = t))]; \]

(WTC$^{-\varepsilon}$3) $\forall x \forall y (x \leftarrow y \neq \alpha)$;

(WTC$^{-\varepsilon}$4) $\forall x \forall y (x \leftarrow y \neq \beta)$;

(WTC$^{-\varepsilon}$5) $\alpha \neq \beta$.

For this theory, we proved the following:
Proposition

\(WTC^{-\varepsilon} \) and \(WTC \) are mutually interpretable. Hence \(WTC^{-\varepsilon} \) is essentially undecidable.

\(WTC \triangleright WTC^{-\varepsilon} \) is easy. We interpret \(WTC \) in \(WTC^{-\varepsilon} \) as:

- **Domain** \(\delta(x) \equiv x = \alpha \lor x = \beta \lor \exists x' \ (x = \beta x') \).
- **Constants** \(\varepsilon \Rightarrow \beta, \alpha \Rightarrow \beta \alpha, \beta \Rightarrow \beta \beta \).
- \(x \bowtie y = z \) Let \(\Omega(x, y) \equiv \exists x' \exists y' \ (x = \beta x' \land y = \beta y') \), and translate the concatenation by \(\text{Conc}(x, y, z) \equiv \)

\[
[x = \alpha \lor y = \alpha \rightarrow z = \alpha] \land [x = \beta \rightarrow z = y] \land [y = \beta \rightarrow z = x] \land \\
[\Omega(x, y) \rightarrow \exists x' \exists y' \ (x = \beta x' \land y = \beta y' \land z = \beta (x'y'))] \land \\
[o.w. \rightarrow z = \alpha].
\]
\(WTC^{-\varepsilon} \) is minimal essentially undecidable

Theorem

\(WTC^{-\varepsilon} \) is **minimal** essentially undecidable.

This result partially contributes the following question by Grzegorczyk and Zdanowski:

Question

Is \(TC^{-\varepsilon} \) minimal essentially undecidable?

The remaining part of the question is the essential undecidability of \(TC^{-\varepsilon} - (TC^{-\varepsilon}1) \), that is, \(TC \) without associative law. We can easily find an decidable extension of each \(TC^{-\varepsilon} - (TC^{-\varepsilon}k) \), \((k = 2, 3, 4, 5)\).
Variations of WTC: WTC+(TC1) + (TC2) ⊬ ◊ WTC

Recall that

(TC1) ∀x (x ∈ ε = ε x = x)

(TC2) ∀x ∀y ∀z (x ⌢ y z = x ⌢ y z)

(TC3) ∀x ∀y ∀s ∀t [(x ⌢ y = s ⌢ t) →
 ∃w ((x ⌢ w = s ∧ y = w ⌢ t) ∨ (x = s ⌢ w ∧ w ⌢ y = t))]

Proposition

WTC interprets WTC+(TC1) + (TC2)

Because WTC+(TC1) + (TC2) is locally finitely satisfiable.

Proposition

WTC can not interpret WTC+(TC3).

Because WTC+(TC3) is not locally finitely satisfiable.
Conclusion of Part II

The following are mutually interpretable ($n \geq 2$):

\begin{align*}
\text{WTC}_n + (\text{Identity}) + (\text{Assoc}) \\
\text{WTC}_n + (\text{Identity}) \\
\text{WTC}_n + (\text{Assoc}) & \quad \text{WTC}_n^{-\varepsilon} + (\text{Assoc}) \\
\text{WTC}_n & \quad \text{WTC}_n^{-\varepsilon} \\
\text{WTC}_n - (\text{WTC1})
\end{align*}

Theorem

\textbf{WTC} - (\textbf{WTC1}), \textbf{WTC}^{-\varepsilon} is minimal essentially undecidable.
Questions

(1) Is WTC-(Identity) Σ_1-complete ?
 \Rightarrow Our conjecture is **NO**.

(2) WTC+ (Editors Axiom) \vdash TC ?
 \Rightarrow Our conjecture is **YES**.

(3) Are there some natural theory T such that
 TC $\vdash T \vdash WTC$ and $WTC \not\vdash T$ and $T \not\vdash TC$?
References

WTC interprets R

Definition of “Good”

We define the formula $\text{Good}(x)$ as follows:

$$\text{Good}(x) \equiv \text{ID}(x) \land \text{AS}(x) \land \text{EA}(x),$$

where

- $\text{ID}(x) \equiv \forall s \sqsubseteq x(s \sqsubseteq \varepsilon = \varepsilon \sqsubseteq s = s)$;

- $\text{AS}(x) \equiv \forall s_0 \forall s_1 \forall s_2[(s_0 \sqsubseteq (s_1 \sqsubseteq s_2) \sqsubseteq x \lor (s_0 \sqsubseteq s_1) \sqsubseteq (s_0 \sqsubseteq s_1) \sqsubseteq s_2 \sqsubseteq x) \rightarrow s_0 \sqsubseteq (s_1 \sqsubseteq s_2) = (s_0 \sqsubseteq s_1) \sqsubseteq s_2]$

- $\text{EA}(x) \equiv \forall s_0 \forall s_1 \forall t_0 \forall t_1[(s_0 \sqsubseteq s_1 = t_0 \sqsubseteq t_1 \land s_0 \sqsubseteq s_1 \sqsubseteq x) \rightarrow \exists w\left((s_0 \sqsubseteq w = t_0 \sqsubseteq s_1 \sqsubseteq s_1 = w \sqsubseteq t_1) \lor (s_0 = t_0 \sqsubseteq w \land w \sqsubseteq s_1 = t_1)\right)]$
WTC interprets \mathcal{R}

Properties of Good

(1) For each $u \in \{\alpha, \beta, \gamma\}^*$, $\text{WTC} \vdash \text{Good}(u)$;

WTC proves the following assertions:

(2) $\forall x (\text{Good}(x) \rightarrow \forall y \subseteq x \text{Good}(y))$, that is
Good is closed under taking substrings.
To translate the product, we define “witness for product”.

First, we define a notion “number strings” as follows:

Definition of “\(\text{Num}\)”

We define the formula \(\text{Num}(x)\) as follows:

\[
\text{Num}(x) \equiv \forall y((y \subseteq x \land y \neq \varepsilon) \rightarrow \alpha \sqsubseteq_{\text{end}} y).
\]

Fact

For each \(u \in \{\alpha\}^*\), \(\text{WTC} \vdash \text{Num}(u)\).
We define a formula $\text{PWitn}(x, y, w)$ as follows:

(i) $\text{Num}(x) \land \text{Num}(y) \land \text{Good}(w)$;

(ii) $\beta y \beta \sqsubseteq_{\text{ini}} w$;

(iii) $\exists z (\text{Num}(z) \land \beta y z \beta \sqsubseteq_{\text{end}} w)$;

(iv) $\forall p \forall z (\text{Num}(z) \land p \beta y z \beta = w \rightarrow \forall z' (\text{Num}(z') \rightarrow \neg (\beta y z' \beta \sqsubseteq p \beta))$);

(v) $\forall p \forall q \forall s_2 \forall t_2 [(\text{Num}(s_2) \land \text{Num}(t_2) \land p \beta s_2 \gamma t_2 \beta q = w \land p \neq \varepsilon) \rightarrow (\exists s_1 \exists t_1 (\text{Num}(s_1) \land \text{Num}(t_1) \land s_2 = s_1 \alpha \land t_2 = t_1 x \land \beta s_1 \gamma t_1 \beta \sqsubseteq_{\text{end}} p \beta))]$;

(vi) $\forall p \forall q \forall s \forall t ((\text{Num}(s_1) \land \text{Num}(t_1) \land p \beta s \gamma t \beta q = w \land q \neq \varepsilon) \rightarrow \beta s \alpha \gamma t x \beta \sqsubseteq_{\text{ini}} \beta q)$.

WTC interprets R

$\text{PWitn}(x, y, w)$

w
WTC interprets R

$\text{PWitn}(x, y, w)$

condition (ii)

$\beta \gamma \beta$

$\stackrel{\text{w}}{\beta \gamma \beta}$
WTC interprets R

$$\text{PWitn}(x, y, w)$$

condition (iii)

$$\beta y \gamma z \beta$$ for some $z \in W$
WTC interprets R

$\text{P Witn}(x, y, w)$

condition (iv)

$\beta y \gamma$ does not appear

$\beta y \gamma z \beta$
WTC interprets R

Translation of product

We translate the multiplication “$x \times y = z$” into the formula $M(x, y, z)$ as follows:

$$M(x, y, z) \equiv (\exists! w \text{PWitn}(x, y, w) \land \gamma z \beta \sqsubseteq_{\text{end}} w) \lor$$

$$\neg(\exists! w \text{PWitn}(x, y, w))) \land z = 0.$$
Main theorem

For each \(u, v \in \{a\}^+ \), there exists \(w \in \{a, b, c\}^+ \) such that \(\text{WTC proves} \)

\[
\text{PWitn}(u, v, w) \land \forall w' (\text{PWitn}(u, v, w') \rightarrow w = w').
\]

In what follows, we see the each steps of the proof of this main theorem.
WTC interprets R

Lemma

WTC proves the following assertions:

1. $\text{Good}(x\beta s) \land x\beta s = y\beta t \land \lnot(\beta \sqsubseteq s) \land \lnot(\beta \sqsubseteq t) \\
 \rightarrow (x = y \land s = t)$.

2. $\text{Good}(x\beta s\beta p) \land x\beta s\beta p = y\beta t\beta \land \lnot(\beta \sqsubseteq s) \land \lnot(\beta \sqsubseteq t)$

 $\rightarrow \begin{cases}
 p \neq \epsilon \rightarrow \exists w(x\beta s\beta w = y\beta \land wt\beta = p) \lor \\
 p = \epsilon \rightarrow (x = y \land s = t).
 \end{cases}$
WTC interprets R

If $x^\beta s^\beta p = y^\beta t^\beta$,

(a) $p \neq \varepsilon$

(b) $p = \varepsilon$
WTC interprets \mathbb{R}

Existence of the witness

Fix $u \in \{a\}^+$. We can prove the existence of the witness $w \in \{a, b, c\}^+$ by the meta-induction on the length of $v \in \{a\}^+$.
To prove the uniqueness of the witness, we prove this by the following two steps: Fix $u, v \in \{a\}^+$ and let $w \in \{a, b, c\}^+$ be some witness for u, v. In WTC, let w' be such that $\text{PWitn}(u, v, w')$. Then,

Step 1

1. For each $k, l \in \{a\}^+$,
 \[\text{WTC} \vdash \forall p (p \beta k \gamma l \beta \sqsubseteq_{\text{ini}} w \rightarrow p \beta k \gamma l \beta \sqsubseteq_{\text{ini}} w'); \]
2. $\text{WTC} \vdash w \sqsubseteq_{\text{ini}} w'$.
WTC interprets R

$w \quad \beta \gamma \beta$

w'
WTC interprets R
WTC interprets R

w

w'

$\beta \alpha \gamma \mu \beta$
WTC interprets R

w $\frac{\beta \alpha \gamma u \beta}{\beta \alpha \gamma u \beta}$

w' $\beta \alpha \gamma u \beta$
WTC interprets R

w \[\beta \alpha \gamma \nu \mu \beta \]

w'
WTC interprets R

w

w'

$\beta \alpha \alpha \gamma \mu \nu \beta$

$\beta \alpha \alpha \gamma \mu \nu \beta$
WTC interprets R

\[w \]

\[w' \]
We prove this by way of contradiction. Let us assume that \(\exists q (wq = w' \land q \neq \varepsilon) \).
WTC \textbf{interprets} R

\textbf{Step 2}

WTC \vdash \overline{w} = w'.

We prove this by way of contradiction. Let us assume that \(\exists q (\overline{w}q = w' \land q \neq \varepsilon) \).
WTC interprets R

Step 2

\[
\text{WTC} \vdash w = w'.
\]

We prove this by way of contradiction. Let us assume that $\exists q (wq = w' \land q \neq \varepsilon)$.

\[
\begin{array}{ccc}
\text{w} & \beta \gamma \zeta_0 \beta \\
\hline
\text{w'}
\end{array}
\]
We prove this by way of contradiction. Let us assume that $\exists q (wq = w' \land q \neq \varepsilon)$.

$\vdash w = w'$.
WTC interprets R

Step 2

\[\text{WTC} \vdash \overline{w} = \overline{w}'. \]

We prove this by way of contradiction. Let us assume that \(\exists q (\overline{w}q = \overline{w}' \land q \neq \varepsilon) \).

\[\begin{array}{c}
\overline{w} \\
\beta \vee \gamma \overline{z}_0 \beta \\
\hline
\beta \vee \gamma \overline{z}_0 \beta \quad \beta \vee \gamma \overline{z}_1 \beta
\end{array} \]

\[w \\
\overline{w}' \]
WTC interprets R

Step 2

$WTC \vdash \bar{w} = w'$.

We prove this by way of contradiction. Let us assume that $\exists q (\bar{w}q = w' \land q \neq \varepsilon)$.

\[w \quad \text{contradict to the def. of PWitn} \quad \beta \nu \gamma z_0 \beta \]

\[w' \quad \beta \nu \gamma z_1 \beta \]